

ATEasy
Test Executive and Development Studio

Getting Started
With ATEasy

GEOTEST – Marvin Test Systems, Inc.
Part No. GT90302 - Revision 8.0.146 (September 3, 2010)

 Getting Started with ATEasy

 Getting Started with ATEasy

Disclaimer

In no event shall Geotest or any of its representatives be liable for any consequential
damages whatsoever (including, without limitation, damages for loss of business profits,
business interruption, loss of business information, other loss or injury) arising out of the
use of or inability to use this product, even if Geotest has been advised of the possibility for
such damages. Geotest products are not intended for life critical medical use.

Support and Subscription

Unless otherwise specified, ATEasy is provided with one year support and subscription
agreement. The agreement provides free support for a period of one year using our web
based support portal http:\\www.geotestinc.com\magic\. In addition, any new version
released during that year can be download and used with no added cost. The subscription
and support agreement can be renewed on a yearly basis provided it is done before the
agreement ends. See Geotest web site http:\\www.geotestinc.com\ for more information
regarding the ATEasy licensing, support, subscription, upgrade, downloads, training,
knowledge base and user forums.

Copyright and Version

Copyright © 1996-2010 Geotest - Marvin Test Systems, Inc. All rights reserved. No part of
this document may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Geotest.

This manual was updated to ATEasy version 8.0.

Trademarks

ATEasy, DIOEasy, WaveEasy. Geotest – MTS, Inc.
Microsoft Developer Studio,.NET,
Visual Basic, Visual C++, Excel,
Word, Windows 95, 98, Me, NT,
2000, XP, VISTA, Windows 7.

Microsoft Corporation

LabView, LabWindows/CVI. National Instruments Corporation
All other trademarks are the property of their respective companies.

http://www.geotestinc.com/magic/�
http://www.geotestinc.com/�

Getting Started with ATEasy

 Getting Started with ATEasy

T A B L E O F C O N T E N T S

CHAPTER 1 - INTRODUCTION ... 1

ATEASY GETTING STARTED ROADMAP .. 1
DOCUMENTATION CONVENTIONS .. 2
TECHNICAL SUPPORT .. 3

General Information ... 3
Software Subscription and Support .. 3
ATEasy Training .. 4
Contact Information ... 4

CHAPTER 2 – SETUP AND INSTALLATION .. 5

ABOUT SETUP AND INSTALLATION .. 5
HARDWARE AND SOFTWARE REQUIREMENTS ... 6
INSTALLATION DIRECTORIES ... 9
INSTALLING HARDWARE INTERFACES ... 9
INSTALLATION TYPES .. 10
WINDOWS HW DEVICE DRIVER MANUAL INSTALLATION .. 11
SETUP MAINTENANCE PROGRAM .. 12
LICENSE, REGISTRATION, AND SUPPORT ... 13

CHAPTER 3 – OVERVIEW OF ATEASY ... 15

ABOUT THE OVERVIEW ... 15
WHAT IS ATEASY? ... 16
AUTOMATED TEST SYSTEM ... 18
WORKSPACE, APPLICATIONS AND MODULES .. 20
THE PROJECT ... 21
SUBMODULES .. 22
THE PROGRAM MODULE ... 25
TASKS AND TESTS ... 25
THE SYSTEM MODULE... 26
COMMANDS ... 26
DRIVER MODULE ... 28
THE INTEGRATED DEVELOPMENT ENVIRONMENT ... 29

CHAPTER 4 – YOUR FIRST PROJECT .. 33

ABOUT YOUR FIRST PROJECT .. 33
STARTING ATEASY ... 35
APPLICATION TYPES .. 36
CREATING AN APPLICATION .. 37
MORE ABOUT THE IDE .. 41
YOUR FIRST TEST PROGRAM ... 43
TEST PROPERTIES .. 46
TEST STATUS AND TEST RESULT ... 48
RUNNING YOUR FIRST APPLICATION .. 51
THE LOG WINDOW .. 51
ADDING THE TEST EXECUTIVE DRIVER ... 53

 Getting Started with ATEasy

USING THE TEST EXECUTIVE DRIVER ... 55
MORE ABOUT TEST EXECUTIVE DRIVER .. 57
BUILDING AND EXECUTING YOUR APPLICATION .. 60

CHAPTER 5 – VARIABLES AND PROCEDURES .. 63

ABOUT VARIABLES AND PROCEDURES ... 63
VARIABLES AND DATA TYPES .. 64
VARIABLE NAMING CONVENTIONS .. 65
DECLARING VARIABLES: .. 66
VARIABLE PROPERTIES ... 67
PROCEDURES .. 68
CREATING A PROCEDURE ... 69
PROCEDURE PROPERTIES .. 70
PROCEDURE PARAMETERS AND LOCAL VARIABLES ... 71
WRITING THE PROCEDURE CODE .. 73
CALLING THE PROCEDURE FROM A TEST .. 75
DEBUGGING YOUR CODE ... 77
MORE ABOUT WRITING CODE .. 80
THE INTERNAL LIBRARY .. 81

CHAPTER 6 – DRIVERS AND INTERFACES ... 83

ABOUT DRIVERS AND INTERFACES ... 83
INTERFACES, INTERFACE TYPES, AND DRIVERS .. 84
ADDING AN INTERFACE .. 85
CREATING AND ADDING DRIVERS .. 88
DRIVER AND DRIVER SHORTCUT .. 89
DRIVER DEFAULT NAME .. 89
DEFINING THE DRIVER INTERFACE ... 90
CONFIGURING THE DRIVER IN THE SYSTEM .. 91
I/O TABLES ... 92
CREATING A SETFUNCTIONVDC I/O TABLE .. 93
CREATING A SETFUNCTIONVAC I/O TABLE .. 96
USING THE OUTPUT DISCRETE MODE ... 97
READING DATA FROM THE INSTRUMENT ...100
CALLING AN I/O TABLE FROM A TEST ...102
USING THE MONITOR VIEW ...103
USING VXI PLUG&PLAY FUNCTION PANEL DRIVERS ...104
USING IVI DRIVERS ...109

CHAPTER 7 – COMMANDS ..111

ABOUT COMMANDS ...111
OVERVIEW OF COMMANDS ..112
COMMANDS AND MODULES ..113
THE COMMANDS VIEW ..115
CREATING DRIVER COMMANDS ..116
ATTACHING PROCEDURES AND I/O TABLES TO COMMANDS ...117
REPLACING PARAMETERS WITH ARGUMENTS ...118
USING COMMANDS FROM OTHER MODULES ...119

Getting Started with ATEasy

CREATING SYSTEM COMMANDS .. 119
PROGRAM COMMANDS .. 122

CHAPTER 8 – WORKING WITH FORMS .. 123

ABOUT WORKING WITH FORMS ... 123
OVERVIEW OF FORMS .. 125
THE FORM DEVELOPMENT PROCESS ... 126
CREATING A FORM .. 127
SETTING THE FORM PROPERTIES ... 128
FORM CONTROLS .. 129
ADDING CONTROLS ... 133
SETTING CONTROL PROPERTIES .. 134
SETTING CONTROLS TAB ORDER ... 137
TESTING THE FORM LAYOUT ... 137
USING EVENTS .. 138
WRITING AN EVENT FOR THE CLOSE BUTTON ... 138
ADDING VARIABLES .. 139
WRITING AN EVENT FOR THE ACQUIRE BUTTON ... 140
WRITING THE ACQUIREDATA PROCEDURE .. 141
THE LOAD STATEMENT ... 143
USING THE FORM ... 144
TESTING THE FORM ... 145

CHAPTER 9 – WORKING WITH EXTERNAL LIBRARIES ... 147

ABOUT EXTERNAL LIBRARIES ... 147
OVERVIEW OF LIBRARIES .. 148
CREATING A DLL-BASED DRIVER .. 149
ABOUT THE GXSW.DLL .. 152
DECLARING DLL PROCEDURES ... 153
IMPORTING C HEADER FILE .. 154
USING DLL PROCEDURES ... 157
DRIVER INITIALIZATION .. 158
HANDLING ERRORS IN A DRIVER ... 159
MORE ABOUT ERROR HANDLING .. 160
COM OBJECTS AND TYPE LIBRARIES .. 161
USING THE EXCEL TYPE LIBRARY ... 162
USING THE OBJECT DATA TYPE .. 165
USING .NET ASSEMBLIES .. 167
USING LABVIEW® VI AND LLB FILES .. 168

CHAPTER 10 – WHERE TO GO FROM HERE .. 169

ABOUT WHERE TO GO FROM HERE ... 169
MORE ABOUT ATEASY ... 169
ATEASY EXAMPLES .. 171

INDEX .. 181

 Getting Started with ATEasy

C H A P T E R 1 - I N T R O D U C T I O N

ATEasy Getting Started Roadmap
This ATEasy Getting Started Guide provides all the information needed to install and use
Geotest’s ATEasy Automated Test Equipment (ATE) software development environment.
This manual assumes you have a general knowledge of PC-based computers, Windows
operating systems, and some knowledge of programming and development tools.

This manual is organized as follows:

Chapter Content
1. Introduction Introduces this Getting Started Guide.
2. Setup and

Installation
Step-by-step directions on how to install and configure
ATEasy.

3. Overview of
ATEasy

An overview of ATEasy including the various module files,
submodules, and the Integrated Development Environment
(IDE) layout, menus, and windows.

4. Your First Project Describes the relationship of projects and applications, the
workspace, creating a project, and project settings.

5. Variables and
Procedures

Explains how to declare variables, naming guidelines and
properties of variables, and how to create and use
procedures.

6. Drivers and
Interfaces

Describes how to create and configure instrument Drivers
and user interfaces.

7. Commands Defines ATEasy commands.
8. Working with

Forms
Describes using forms to control programs and instrument
operation.

9. Working with
External Libraries

Describes how to attach and use external libraries.

10. Where to Go From
Here

Where to find more information on ATEasy topics and
concepts.

Index A guide to important topics and concepts in this manual.

2 Getting Started with ATEasy

Documentation Conventions
There are several naming conventions used throughout the documentation. The conventions
used are:

Example Description
Copy or Paste Commands are indicated in bold type.
SHIFT+F1 Keys are often used in combinations. The example to the

left instructs you to hold down the shift key while pressing
the F1 key. When key combination instructions are
separated by commas, such as ALT+D, A, hold the ALT
key while pressing D, then press A.

cd drivers Bolded text must be entered from the keyboard exactly as
shown, especially for property, method, and event
keywords.

Direction Keys Refers to the up arrow (↑), down arrow (↓), right arrow
(→), and left arrow (←) keys.

Variable Italicized text is a placeholder for variables or other items
that you must define and enter from the keyboard.

[expressionlist] Items inside square brackets are optional.
{ While | Until } Braces and vertical bar indicate a choice between items.

You must choose one of them, unless all of them are
enclosed in square brackets (optional).

GTSW1.DRV Words in all capital letters indicate filenames.
Examples Examples and source code are indicated in Courier, with

appropriate indentation, for example
Procedure chk1.OnClick():Void Public
{
 chk1.Caption=“Hello”
}

0xhexnumber An integer in hexadecimal notation, for example, 0x10A
equals 266 in decimal.

Chapter 1 - Introduction 3

Technical Support

General Information
Visit our web site for more information about ATEasy support options. Our Web site
(http://www.geotestinc.com) contains sections describing: support options, application
notes, download area for downloading upgrades, examples, instrument drivers, and how to
submit support questions for ATEasy registered users.

ATEasy comes with one year subscription and support plan. The plan allows you access to
our technical staff to get you started and provide basic assistance and entitled you for free
upgrades during that year. The support is provided using our web-based support module
name M@GIC (My Account@ Geotest Inc .COM) at http://www.geotestinc.com/magic.
The web-based support allows you to log in and submit issues such as bug reports,
problems, how to questions, suggestions and more. Once an issue is submitted you will be
notified automatically when the issue status is changed, then you'll be able to revisit
MA@GIC to reply to question or read answers posted by our professional tech support
personal. Telephone support is also available on weekdays from 8:00 AM to 5:00 PM
Pacific Standard Time (PST) by calling (949) 263-2222. For telephone support times and
availability outside of the Americas, contact your local Geotest distributors.

After the initial year is over you can continue to receive free upgrades and technical support
by renewing and purchasing additional Software Subscription and Support plan.

Software Subscription and Support
ATEasy's Subscription and Support is an all-inclusive service that provides premium
support and software upgrades for ATEasy. It includes:

• Unlimited technical support assistance for immediate solutions.

• Access to senior application engineers for advice and guidance in application
development.

• Free updates and upgrades to ATEasy while you subscription is current.

• Free access to instrument drivers, examples, knowledge base and user forums at
Geotest web site.

• Support and subscription can be renewed provided it is done before you current
agreement ends.

http://www.geotestinc.com/�
http://www.geotestinc.com/magic�

4 Getting Started with ATEasy

Geotest provides both pre-sales and post-sales technical support for all products. Our
Technical Support engineers are qualified to help you select hardware and software for your
application, explain the specifications, and assist you in designing and building a complete
test system.

To use your subscription and support plan please create a M@GIC account at Geotest web
site http://www.geotestinc.com/magic. The account is also used to request software licenses
and upgrades when a new version is available.

ATEasy Training
Geotest provides 3 and 5 days ATEasy training program. If you purchased a training
program, contact your sales representative to schedule a training session.

Please consult our Web site or contact sales@geotestinc.com for more information and
class schedules.

Contact Information
Geotest - Marvin Test Systems, Inc.

Phone: (949) 263-2222

Fax: (949) 263-1203

URL: http://www.geotestinc.com

Support: http://www.geotestinc.com/magic

Sales - mail to: sales@geotestinc.com

License - mail to: license@ateasy.net or use your M@GIC account

http://www.geotestinc.com/magic�
mailto:sales@geotestinc.com�
http://www.geotestinc.com/�
http://www.geotestinc.com/magic�
mailto:sales@geotestinc.com�
mailto:license@ateasy.net�

C H A P T E R 2 – S E T U P A N D I N S T A L L A T I O N

About Setup and Installation
This chapter provides information on installing and configuring ATEasy. It supplies
software and hardware installation information, setup requirements and options, and
registration information.

The README.1ST file located on the installation disk provides the latest information
about ATEasy, as well as special, late breaking installation notes. Please refer to this file
before running ATEasy. The Windows NOTEPAD or WORDPAD programs can be used to
view and print this file.

This chapter covers the following topics:

Topic Content
Hardware & Software
Requirements

Minimum and recommended requirements.

Installing ATEasy Procedure for installing ATEasy.
Installation Directories Where ATEasy places files during installation.
Installation Types Deciding which ATEasy components to install.
Installing Hardware
Interfaces

Where to get information on installing and configuring
interface boards.

Windows NT
Installation

Special considerations when installing ATEasy under
Windows NT.

Setup Maintenance
Program

Adding or removing individual ATEasy components,
installing a new version of ATEasy or reinstalling ATEasy
when files are corrupted, and removing ATEasy entirely.

Registration and
Support

How to register and obtain technical support for ATEasy.

6 Getting Started with ATEasy

Hardware and Software Requirements
ATEasy is a 32-bit Microsoft Windows application program designed and tested for
Windows operating systems. You must have Windows installed on your computer prior to
installing ATEasy.

To install ATEasy you need the following minimum configuration:

• A 32 or 64 bit Windows system compatible with Microsoft Windows 98, Windows
ME, Windows 2000, Windows XP, Windows Server 2003, or 2008, Windows VISTA,
Windows 7.

• Internet Explorer 6.0 or later.

• 17 inch monitor or larger. At least 1024x768 resolution or higher is recommended for
developing ATEasy applications.

• For ATEasy License Server: TCP/IP or IPX/SPX network protocols and Windows
2000 or newer.

Installing ATEasy
You can install ATEasy by following these steps, or you can use the silent or automated
Installation by using command line options - see below Silent (Automated) Setup:

 Follow these steps to install ATEasy:

1. Insert the ATEasy CD-ROM disk in the CD-ROM drive. The Setup program runs
automatically if your drive is set up to auto play.

If Setup does not run automatically, select Run from the Start menu and when
prompted, type:

[drive letter]:\AExplorer

Where [drive letter] is the drive letter assigned to your CD-ROM drive. As an example,
type “D:\AExplorer” when your CD-ROM is assigned to drive letter “D”.

Note: Internet Explorer (IE) 6.0 or above is required to install and to use ATEasy.

Note: When installing under Windows 2000, you may be required to restart the setup
after logging-in as a user with Administrator privileges. This is required in order to
upgrade your system with newer Windows components and to install and a kernel-
mode device driver (HW.SYS) required allowing ATEasy application access hardware
devices on your computer

Chapter 2 – Setup and Installation 7

2. A window showing several options will be displayed. Select ATEasy Software and
select Install ATEasy to start ATEasy setup program.

3. The first screen to appear is the Welcome screen. Click Next to continue.

4. The next screen is the License Agreement. When you finish reading it, click Yes to
continue (answering “No” exits the Setup program).

5. Enter your name and company name. Click Next to continue.

6. Enter the folder where ATEasy should be installed. Either click Browse to set up a new
folder, or click Next to accept the default entry of C:\Program Files\ATEasy.
For more information on the Installation Directories, see page 9.

7. Select the type of Setup you wish and click Next. For more information on the types of
installation available, see page 9.

8. Select the Program folder where the icons and shortcuts for ATEasy are to be stored.
Click Next when finished.

The program will now start its installation. During the installation of ATEasy, Setup
may upgrade some of the Windows shared components and files.

9. If prompted, restart Windows. Setup may ask you to reboot after it complete if some of
the components it replaced where used by another application during the installation –
do so before attempting to run ATEasy.

You can now start ATEasy by double-clicking the ATEasy icon on the desktop ,
or by selecting ATEasy from the Start, Programs, ATEasy menu.

8 Getting Started with ATEasy

Setup Command Line
The following command line options for the setup are available:

ATEasy8 [/s [/SetupType"type"] /TargetDir"Path"]

Where:

1. Silent Installation. Optional.

/s

2. Setup Types. Optional, may be used with /s.

/SetupType["type"]

The type can be one of Installation types: Typical, Full, Compact, Run-Time,
License Server. The default type is "Typical".

3. Target Folder. Optional, may be used with /s.

/TargetDir"Path"

The default path is "c:\Program Files\ATEasy".

Silent (Automated) Setup
ATEasy can be installed in silent mode. Silent mode setup can be started by running the
setup with the /s command line parameter. In silent mode no windows are displayed during
the installation and the whole setup is automated based on the options selected from the
setup command line. The silent mode setup is useful when incorporating the ATEasy setup
to your own setup to distribute ATEasy applications and thus it allows you to automate the
setup and the deployment of ATEasy applications.

Example

The following example installs ATEasy run time in silent mode (no user interface is
displayed) to the default location c:\program files\ATEasy, ATEasy6.exe is the setup
program downloaded from the Internet or under the CD Files folder:

 ATEasy8 /s /SetupType”Run-Time”

Error Messages

In case errors occurred during the setup, ATEasy will report them in the file
ATEasySetup.log in ATEasy Folder. It is recommended to review the log file to see if the
installation is successful or not.

Chapter 2 – Setup and Installation 9

Installation Directories
ATEasy files are installed in the default folder C:\Program Files\ATEasy. You can
change the default ATEasy root folder to one of your choosing at the time of installation.

During the installation, ATEasy Setup creates and copies files to the following directories:

Name Purpose / Contents
…\ATEasy The ATEasy root folder. Contains the ATEasy program

files required to develop ATEasy applications.
…\ATEasy\Drivers Driver files: instrument drivers and other drivers.
…\ATEasy\Examples Programming examples. The example file that you build

throughout this guide, MyProject.prj, is also located here
along with all of its associated files.

…\ATEasy\Help Help files.
…\ATEasy\Images Image files, including icons and bitmaps that can be used

with the application toolbars, menus and buttons you create.
…\Windows\System Windows System folder (…\Windows\System32 when

running Windows 2000 or newer). Contains the ATEasy
run-time system and some instruments drivers DLLs. These
files are required in order to run ATEasy applications.

Installing Hardware Interfaces
The installation of interface boards (for example, GPIB or VXI) is not required for the
installation and operation of ATEasy. Refer to “Chapter 6 – Drivers and Interfaces” for
additional information on installing and configuring hardware interfaces.

10 Getting Started with ATEasy

Installation Types
The Setup program allows you to select one of the following types of installations.

• Compact – uses minimal hard disk space, but includes all components required to run
and develop an ATEasy application

• Custom – allows you to control which optional components are installed

• Full – installs all ATEasy components

• License Server – installs the ATEasy license server used to provide ATEasy licenses
to other computer running on the same network.

• Run-Time – installs the components required to run ATEasy, not including the
Integrated Development Environment (IDE), which is used to develop ATEasy
applications

• Typical – (default) installs the most commonly used ATEasy components used to
develop and run an ATEasy application

Installation details are shown in the following table:

Components
Installed

Compact

Custom

Full

License
 Server

Run-Time

Typical

Run-Time Yes Yes Yes No Yes Yes
Program Yes Yes Yes No No Yes
Help Yes Yes (opt) Yes No No Yes
Drivers No Yes (opt) Yes No No Yes
Examples No Yes (opt) Yes No No Yes
License
Server

No Yes (opt) No Yes No No

ATEasy 2.x
Migration

No No (opt) Yes No No No

The License Server component is used to setup a network computer to serve as a license
server for other computers running that are connected to the network. See the ATEasy On-
Line Books for more information.

Chapter 2 – Setup and Installation 11

HW Device Driver Manual Installation
During ATEasy installation, a special device driver called HW, must be installed and
started before ATEasy can be used. Under Windows 2000 or newer before installing the
HW driver, you must be logged on as a user with administrator privileges.

The ATEasy Setup program normally installs the driver and starts it automatically.
However, if the current user is not logged-in as an administrator, the driver installation
fails. This section explains how to install the driver manually when the Setup program fails
to do so.

 To manually install the kernel mode driver, perform the following:

1. Login as an administrator (applicable only for Windows 2000 or newer).

2. Open a Command prompt window.

3. Change folder to the installation destination folder for the device driver HW by using
the CD command. For example:

CD \Program Files\Geotest\HW

4. At the command prompt, type the following command:

HWSETUP -vdd install start

If the current working folder is different from the folder where the HW driver resides,
you may specify your own custom path. For example:

HWSETUP -vdd install=a: start

The Setup program installs the driver as a service. The service can be started or stopped
from the Windows Device Manager which can be opened from the Computer Management
application. The -vdd switch can be removed from the command if support for 16-bit
drivers is not required (only the 32 or 64 bit DLL will be used in this case).

The Setup program HWSETUP.EXE, the device driver HW.SYS/HW64.SYS/HW.VXD
and HWVDD.DLL files may be distributed with ATEasy applications. Additional
HWSETUP.EXE command line options are available. To display these options, type
HWSETUP without command line options.

12 Getting Started with ATEasy

Setup Maintenance Program
If you run Setup again after ATEasy has been installed, Setup opens in the Maintenance
mode. The Setup Maintenance Program allows you to modify the current ATEasy
installation. You can run Setup in Maintenance mode for the following reasons:

• When you want to add or remove ATEasy components.

• When you have corrupt files and need to reinstall.

• When you want to completely remove ATEasy.

The Maintenance mode screen is shown below. Select one of the screen options and then
click Next.

Chapter 2 – Setup and Installation 13

The Maintenance Mode screen options are described further below:

Maintenance
Option

Description

Modify Use to add or remove individual ATEasy software components.
Repair Use to reinstall ATEasy when you have corrupt files or to

upgrade and install a new version of ATEasy. Repair refreshes
and recopies current files that are corrupt and upgrades the files if
necessary.

Remove Use to completely remove ATEasy and all its components. Also
removes ATEasy from the Windows Registry and the Startup
menu.

License, Registration, and Support
To use ATEasy you must purchase a license from Geotest. Three types of licenses are
available:

• Single License

• Network License

• Hardware Key (USB or LPT versions)

If you do not have a license, you can activate a 30 days trial version of the ATEasy
software. The trial license contains full ATEasy functionality for 30 days. You are allowed
one 30 days trial period on the computer on which you install ATEasy.

A license can be set up from the ATEasy License Setup dialog box. This dialog is
displayed either when starting ATEasy when no license is installed or from the About
ATEasy menu item under the Help menu used when you want to change the license.

Users who purchased a subscription plan must register to activate the plan. A subscription
plan entitles you to receive free upgrades and unlimited customer support. If you did not
purchase the subscription plan you may register as well to receive free ATEasy newsletter,
product service packs, updated drivers and examples.

See the ATEasy on-line books for more information about how to register the product and
setup a license.

Our Web site (www.geotestinc.com) contains sections describing: support options,
application notes and knowledge base articles, downloading upgrades, examples,
instrument drivers, and submitting support questions for ATEasy registered users. See
“Technical Support” on page 3 for more information about how to obtain support for
ATEasy.

http://www.geotestinc.com/�

14 Getting Started with ATEasy

C H A P T E R 3 – O V E R V I E W O F A T E A S Y

About the Overview
This chapter provides general information regarding ATEasy. It provides an overview of
ATEasy including Automated Test Equipment (ATE) test systems, the structure of
ATEasy, the development process, and introduces the ATEasy Integrated Development
Environment (IDE).

Use the table below to learn more about overview topics:

Topic Description
What is ATEasy? Provides an overview of ATEasy.
Automated Test System Explains the automated test system modules.
Workspace, Applications
and Modules

Introduces the component parts of an ATEasy
application.

The Project Explains the structure of an ATEasy project.
Sub modules Describes the sub modules serving as containers for

objects such as forms and procedures.
The Program Module Describes the Program module and the program tests.
Tasks and Tests Describes the program Tests submodule and program

Tasks and Tests.
The System Module Describes the System module.
Commands Describes Commands statements.
Driver Module Describes the Driver module.
The Integrated
Development
Environment

Introduces the ATEasy Integrated Development
Environment (IDE) used to develop ATEasy
applications.

16 Getting Started with ATEasy

What is ATEasy?
ATEasy is a test executive and a software development environment for Test and
Measurements (T&M) applications. It contains all the tools required to develop test
applications for Automated Test Equipment (ATE) systems and for instrument control
applications. The purpose of the ATE system is to perform testing on one or more
electronic products called Units Under Test (UUTs) such as components, boards,
assemblies, etc. A typical ATE system consists of a computer/controller, several test and
measurement instruments and a test application designed to control the system instruments
in order to test the UUT.

Running under Microsoft Windows, ATEasy provides a familiar graphical user interface
(GUI) combined with the flexibility of an object oriented programming environment. Users
of Microsoft Visual Basic or Visual C++ will feel right at home.

Supporting any instrument, regardless of its interface, ATEasy develops an ATE
application in a single integrated environment. With specialized features designed for
testing and instrument control applications, ATEasy can also be used for data acquisition,
process control, lab applications, calibration, and for any application requiring instrument
control. ATEasy supports many instrument interfaces including VXI, GPIB (IEEE-488),
RS-232/422, PC boards, PXI, and LXI (TCP/IP).

ATEasy’s Integrated Development Environment (IDE) is object oriented and data-driven.
Editing tools are automatically selected by ATEasy according to the type of object to be
created or modified. This feature simplifies programming, as you merely click on an object
and ATEasy automatically selects the appropriate tool.

ATEasy’s IDE includes tools for creating instrument drivers, user interface, tests,
documentation, test executives, report generation and anything else you need to create
T&M applications – all with point and click and drag and drop ease.

ATEasy contains a high-level programming language enabling test engineers, electronics
engineers, and programmers to develop and integrate applications of any scale – small to
large, simple to complex. The ATEasy programming language allows user-defined
statements to be used along with flow control, procedures, variables, and other common
items found in most programming languages. The ATEasy programming language is
flexible and powerful, yet easy-to-use and self-documenting.

Chapter 3 – Overview of ATEasy 17

Professional programmers will appreciate ATEasy’s programming language offering DLL
calling, C header file importing for DLL functions prototype, OLE/COM/ActiveX controls
support, .NET Assemblies, LabView® VIs (Virtual Instruments) or their libraries (LLB),
function panel instrument driver files (used mostly by LabWindows/CVI®, multi-
threading, exception handling and many more software components and standards for
developing complex applications in a truly open system architecture. ATEasy’s
programming language also contains many built-in programming elements to simplify
programming, allowing a non-programmer to easily use ATEasy to develop an application.

The unique design of ATEasy provides a structured and integrated framework for
developing reusable components and modules you can easily maintain and debug. These
components can be reused from application to application reducing the time and effort of
developing new, and maintaining existing, applications. The developer is given a
framework especially designed especially for a T&M application. The framework contains
pre-defined components designed for interfaces (such as GPIB), instruments control and
drivers, system configuration, test requirement documents and test executives.

In addition, the ATEasy IDE provides a Rapid Application Development (RAD)
environment. This provides a way to write, run and debug applications in very short cycles
as required by instrument-based applications. The ATEasy IDE is an object-oriented
environment, making the editing of common tasks or objects displayed in the IDE very
similar to other object-oriented environments. The similar functionality greatly reduces the
learning curve for ATEasy.

With ATEasy, multiple users can edit the same file representing a driver system or a
program. Files contain version information that allows keeping track of, and documenting,
the changes. In addition, all ATEasy documents can be saved to a text format allowing
comparing and merging of changes between multiple users and tracking changes using
version control software in a better way.

18 Getting Started with ATEasy

Automated Test System
An Automated Test System, also referred to as Automated Test Equipment (ATE), is a
collection of instruments under computer control performing automated test functions.

The diagram shows a typical configuration of an ATE system. A computer provides control
over test and measurement instruments by using hardware interfaces. The instruments, such
as measurement, stimulus, switching, power and digital are connected to a Unit Under Test
(UUT) through an adapter.

The most common computer used in ATE
applications is the PC. Due to its relatively low
cost, computing power, and the availability of
hardware interfaces and computer programs, the
PC has become the de-facto standard of the test
industry.

The PC supports numerous methods called
interfaces for controlling test instruments. These
interfaces include IEEE-488 (GPIB), VXI, ISA
bus, PXI/PCI Bus, LXI/TCP-IP, serial
communication such as RS-232/422/485, USB and
more. Software programs such as ATEasy allow
the computer to control test instruments using any

of these interfaces.

Chapter 3 – Overview of ATEasy 19

Test instruments include:

• Measurement – instruments measuring electrical characteristics

• Stimulus – instruments generating electronic signals

• Digital – instruments that read and write digital patterns

• Power – instruments using power sources

• Switching – instruments routing electrical signals to different points

The adapter, also referred to as Interface Test Adapter (ITA), routes the signals from the
test system to the Unit Under Test (UUT), which is the target of the ATE.

Under software control, the computer performs test sequences and procedures used to
determine if the UUT is performing according to its specifications. Controlling the test
instruments, routing signals to various test points in the UUT, and measuring UUT
responses achieve this performance determination. ATEasy provides all the tools required
during the development, debugging and integration of test sequences and procedures.

20 Getting Started with ATEasy

Workspace, Applications and Modules
An ATEasy application is developed in the Integrated Development Environment (IDE)
within a Workspace file. A Workspace file is a container holding the programming
environment and the last saved layout of the IDE. The Workspace itself is not a part of the
application.

ATEasy applications are Windows executable files created from project files containing
one or more modules. A typical project file contains a System, one or more Program(s), and
one or more Driver(s). The System, Program, and Driver are called ATEasy modules. Each
module contains sub modules, such as Forms, Commands, Procedures and more. Each
module is stored in a project file, which may be inserted or moved between projects so it
can be reused by any other ATEasy application.

The diagram shows a
Workspace, its Project file,
Program, System and Driver
modules.

The Workspace file and its
image as it appears in the IDE

 contain a list of files or
documents and the state of the
IDE windows and their content.
Only one workspace can be
loaded by the IDE at a time.
Typically, the workspace file
contains a list of one or more
projects files loaded by the IDE.

Chapter 3 – Overview of ATEasy 21

 The Project
The Project file contains a list of related module files, called modules shortcuts, required
to develop and generate an application. The Project becomes an application when it is
compiled or built – creating an executable (.EXE) file.

As shown in the diagram, two projects are displayed.
The Project ANTSM2 appears in bold to indicate it is
the Active Project. It contains one System Shortcut

 associated with the hardware configuration of a
given test system. In addition, the project also
contains Program Shortcuts , UM150 and
UM152, each associated with a UUT. When a project
contains multiple programs, you can select the first
program to run. Other programs can be run using the
Run statement invoked from the application code.

Only one Project in a workspace can be active. When building, debugging, or running test
programs, only the current active project will be used. When you use the Build or Run
commands from the IDE menu, it will build or run only the active project. Once the project
is built, the active project is compiled and the result is an executable file that can be run
independently of the IDE similar to any Microsoft Windows application.

The relationships among a Project, the System module, and an Application are as follows:

• A Project may contain one System module and multiple Program modules.

• A Project must have a System, or a Program, or both.

• A System may contain one Driver, several Drivers or none.

• An Application can be built from a Project that contains Program, or a System, or both.

22 Getting Started with ATEasy

Submodules
Modules (System, Program, or Driver) contain submodules serving as containers for objects
such as forms and procedures. Most submodules are common to all modules and may be
used by the system, program, or driver modules. The table below lists and describes the
available submodules and their icons as they appear in the ATEasy development
environment:

Submodule Description

Forms

A Form is a window or dialog box comprising part of an
application’s user interface. Common use of forms is for a virtual
instrument’s panel and is used to display its status or control its
settings. Other uses include a window allowing a user interface to
control the test application, save test results, and perform other
user interaction. A form can contain a menu bar, toolbar, status
bar, and controls. Forms also contain code used to respond to
events caused as a result of user action (for example, an OnClick
event is called when the user clicks on the control). The ATEasy
internal library contains a large number of ActiveX controls used
to display and accept data (for example, AChart control). In
addition, you may use third party ActiveX controls.

Commands

Commands are user-defined statements extending the ATEasy
programming language. Commands can be associated with
procedures. In Drivers, commands can also be associated with an
I/O Table used to send or receive data from an instrument.

Procedures

A Procedure contains code that can be called by other procedures
or test code to perform an action. Procedures allow the code to be
modular and re-useable. Procedures have a name used for calls,
parameters to get and set data to or from the procedure, and code,
which is programming statements used to perform certain actions
at run-time.

Events

The Events submodule contains pre-defined procedures you can
fill in. ATEasy calls these procedures when an event occurs.
Some events are called at initialization and others at the end of a
program, system, driver, task, or test. Events are typically used to
change the flow control of the application and to customize the
test results log. Other events are called when an error or abort
occurs, thereby allowing the programmer to decide at run-time
what to do upon the occurrence of these events.

Chapter 3 – Overview of ATEasy 23

Submodule Description

Variables

Variables are used for storing values. Variables have a name and
a type. Types can be one of the ATEasy basic types including
Char, Word, Long, Double, String, Object, Variant, (and more) or
any user-defined type such as Structure or Enum. A variable can
also be defined as an Array (group of many variables of the same
type under one variable), as Public (allowing other modules to
use it), or as Constant (cannot change by code). A variable may
have initial value.

Types

The Types submodule holds user-defined types for a module:
Structure, Enum, and Typedef. Structure contains fields
possessing different types. Structure allows the programmer to
group different data typesXXX under one variable. Enum
contains named integer constants and Typedef is used to alias to
a different type.

Libraries

A Library is an external module containing procedures, classes
and other programming elements. ATEasy can use three kinds of
libraries:

1. Dynamic Link Libraries (DLLs), which is a file
typically with .DLL file extensions containing
procedures.

2. Type Libraries, which contain classes, procedures, and
other programming elements and is based on Microsoft
component technology (COM). Type libraries allow you
to make use of classes exposed by external libraries or
application. Examples of type libraries are ActiveX
controls or MS-Excel.

3. .NET assemblies, which contain classes, procedures, and
other programming elements and is based on Microsoft
.NET component technology.

Unlike DLL where you are required to define (manually or
import a C/C++ header file (.h)) the programming elements
included in it, a type library or a .NET assembly contains a
complete definition of the programming elements exported by the
library.

IO Tables

An I/O Table is a table of commands to create, send, receive, and
decode messages to or from an instrument. I/O Tables can be
used to control instruments or processes via message-oriented
interfaces such as GPIB, VXI, RS-232, WinSock, and more. Only
drivers have this submodule.

24 Getting Started with ATEasy

Submodule Description

Tests

The Tests submodule contains a collection of tests, usually
grouped under tasks, used to test the UUT. The Test contains the
code and the requirements of the test. The task is a way to group
several tests and arrange them in logical order. At run-time when
the program runs, each test generates a status: Pass, Fail, None,
or Error. Only programs have this submodule.

Drivers

Drivers is a submodule within a system module containing file
shortcuts to all drivers used by the system. The Driver Shortcut

 contains the driver filename, its name, and the driver
configuration (for example, interface type or address) as used by
the system. The driver itself, when used by the system or program
in the project, is typically used to control an instrument by
sending and receiving data to/from its interface, such as a GPIB
interface.

Misc

Misc is a submodule within a project, program, system, and
driver module. The Misc subfolder is created by the user and
contains sub folders and shortcuts to external files. The Misc
folder is used is to store baggage files for your projects or
modules such as documentation, dlls, software components and
others. You can open /edit/print these files directly from ATEasy
which uses the external Windows application that is associated
with the file. For example Microsoft Word will be used to open
files with .doc file extensions.

Chapter 3 – Overview of ATEasy 25

 The Program Module
ATEasy test programs are modules containing the necessary tests required to test a Unit
Under Test (UUT). Programs follow the guidelines of the Test Requirements Documents
(TRD) and therefore are divided into Tasks and Tests. Program tests and procedures can
use the procedures, variables, and other submodules defined in the program.

The program resides under the project Programs submodule. Multiple levels of Programs
folders can be created in order to organize your project test programs into categories and
different UUTs . The program can use public symbols, such as procedures or variables,
defined in the project system or drivers. Many programs can reside under the same project.
The project contains the first program to run. After the program runs, the application can
schedule another program to run by using the Run statement. Only one program can run at
a time. If no program is called, then the application terminates. Every time a program runs,
its variables are reset and initialized.

 Tasks and Tests
ATEasy allows you to organize a program into Tasks and Tests. A Task consists of a group
of Tests testing the same block or logical unit in the Unit Under Test (UUT). Each Test
measures some portion of the UUT and determines if the measurement passed or failed.
The results and status measured in the program Tests are normally printed to a Test log
which can serve as a Test report.

A Test contains programming statements (code) generating a single result (typically a
measurement), or a status: Pass, Fail, Error or None. According to the type of Test,
ATEasy can determine at runtime if the measurement is of acceptable value and generate a
status. As an example, a Test may contain code applying input power to the UUT and then
measuring the current drawn by the UUT.

The Task status is the status of its Tests. For example, if one of the Tests fails in a Task,
and another passes under the same Test, then the Task status is Fail. The Task status allows
you to immediately determine if the specific UUT block or function is performing as
required or if it failed.

Using Tasks and Tests, you can design a test program to match a Test Requirement
Document (TRD). ATEasy is quite flexible when the structure of a Test program needs to
be organized after the program is created. Tasks and Tests can be moved, renamed,
duplicated, and deleted by a click of a mouse. In addition, during run-time, Tasks and Tests
can be called and executed in any order you or the application requires.

26 Getting Started with ATEasy

 The System Module
The System is a module containing the hardware configuration of a given test system as
well as commands associated with the unique configuration of that system. The System
reflects the currently installed instruments and their configurations, such as the instrument
interface (for example, GPIB) and its address.

A System may contain zero, one, or more driver
shortcuts residing under the System’s Drivers
submodule.
The Driver shortcuts contain the name of the Driver
(for example, DMM), the Driver file name, and
configuration properties such as the device address of
its interface.
The System contains sub modules such as Procedures
and Variables, which can be used by the project
programs if marked as public. Unlike Program
variables, System variables retain their values
throughout the life of the application.

 Commands
A command is a user-defined statement calling an attached procedure or I/O table. The
command statement is used in a test or procedure within a Program, System, or Driver
module. Commands offer several advantages:

• Once defined, commands appear in cascading menus on the ATEasy Menu bar
allowing the user to insert them into the code by selecting them from the menu. The
cascading menus organize them into logical groups, such as setup, measurement, and
more. This allows the user to locate them faster and eliminates the syntax errors that
can appear if you enter commands manually.

• Commands simplify programming because you can substitute easy-to-understand,
English statements for cryptic procedure names and parameters making the test code
more readable and eliminate additional documentation.

• Commands can be device-independent. If you code using commands, you can change
the driver without having to recode or rewrite your code.

Chapter 3 – Overview of ATEasy 27

Command examples are shown below:

DMM Set Function VAC

MUX Connect BusA (1)

Delay(100)

DMM Measure (TestResult)

Commands can be defined under the Program, System, or Driver Commands submodules.
The Commands submodule contains the programming statements you designed and created.

System module commands are used to operate the system instruments and reflect the
system’s wiring and switching networks. These commands can be called from the project’s
programs tests or from the system procedures. In the example below, the command
measures volts DC using a DMM (Digital Multimeter) between the unit under test (UUT)
points P1 and P13:

System Measure VDC P1_P13 (d)

This System command can be associated with a System procedure using more than one
system instrument (DMM and a SWITCH) as shown here:

SWITCH Close (13)

DMM Set Function VDC

DMM Measure (dResult)

SWITCH Open (13)

As described, a single System command statement replaced four driver commands resulting
in a simpler, modular program in the test using that command.

28 Getting Started with ATEasy

 Driver Module
An ATEasy Driver is a plug-in, reusable module that can export any of its submodules to
any other module (Programs, System, and other Drivers) in the project. The Driver is
generally used to communicate with the “outside world” such as instruments or other
devices. In a project, a driver resides under the System Drivers submodule.

When defining a driver, you select the interfaces (for example, GPIB or VXI) the driver
supports and their default configuration (such as timeout, terminator and more). Once the
driver is inserted into the system, a driver shortcut is created. You then select the interface
used, and set other configuration attributes such as address.

Unlike a program, the Driver variables retain their values during the life of the application
even after a program has finished. For example, if a program invoked a Driver’s virtual
DMM panel, the virtual panel would still be available after the Program is finished.

Driver commands are high-level statements similar to the statements commonly found in
Test Requirement Documents (TRDs). The Driver commands, typically the code used by
programs tests, are independent of the actual instrument or the method used to
communicate with the instrument (for example, GPIB). A major advantage of this
architecture allows ATEasy users to replace instruments and drivers without the need to
modify any of the test program code. This holds true for any instrument or Driver, as long
as the Driver commands are designed in the same way for all instruments of the same type.

Like any module, the Driver also contains the Forms submodule. Forms may be used
interactively to create virtual panels of the instruments, allowing you to control the
instrument interactively without programming.

An ATEasy Driver is a reusable module. Any libraries or programming elements declared
as public and used within the Driver are available to all other modules within the project by
merely referencing them. The advantage is code duplication is avoided and code reuse is
encouraged.

ATEasy drivers can be created by filling the driver sub modules (e.g. inserting an external
library and creating driver commands) or by importing a function panel (.fp) driver file that
is usually used when programming in LabWindows/CVi®® environment.

Chapter 3 – Overview of ATEasy 29

The Integrated Development Environment
Developing ATEasy applications is done using the ATEasy Integrated Development
Environment (IDE). The IDE contains all the tools required to create an application, run,
debug, and then build in order to create Windows’ executable files.

The following figure shows the main window of the IDE below with callouts to the
individual windows.

Menu Bar Standard
Toolbar

Build/Run
Toolbar

Form/Design
Toolbar

Workspace
Window

Log
Window

Properties
Window

Controls
Toolbar

Status
Bar

MDI Child
Windows/Tabs

Auto Hide
Windows

30 Getting Started with ATEasy

The following windows are displayed:

• Menu Bar – contains the IDE menus including:

• File commands – used for file operation commands such as: Open, Save, and
Print. Also used for Microsoft Source Safe connectivity such as Check-In/Out
and more.

• Edit commands – used for editing operations such as: Undo, Redo, Cut,
Copy, Paste, Delete, Find, and Replace.

• View commands – used for changing the way you view documents, and to
show or hide the workspace built-in windows such as: Workspace, Variables,
Properties, Log, and debug windows such as Call Stack/Locals, Watch,
Debug, and Monitor. The built-in windows are dock-able, that is, they can be
docked to either side of the main window making them always visible.

• Insert commands – Used to insert code commands and statements to the code
editor and to insert object such as variables, procedures, forms, and more.

• Build commands – used to perform syntax checking and to build the
application to an executable file.

• Run commands – used to start, abort or pause the application, and to perform
test level debugging commands such as: Loop On Test and Stop On Failure.

• Debug commands – used to perform source level debugging commands such
as Step Into, Step Over, Toggle Breakpoint and to debug small portions of
your application with commands such as Doit! and Taskit!

• Tools commands – used to customize the IDE keyboards commands, menus
and toolbars, to set the IDE options such as directories, and to manage users,
password, and access rights.

• Help commands – provide commands to search and open the on-line help.

Chapter 3 – Overview of ATEasy 31

The IDE’s most common menu commands can also be displayed using the context menu,
invoked by using the right mouse button or by using fully customizable keyboard shortcuts.

• Toolbars – including the Standard toolbar used for common commands, the
Build/Run toolbar used for common build and run commands, the Form Design
toolbar used for form layout operations, and the Controls toolbar used for inserting
controls to a form.

• Status bar – contains multiples panes displaying the status of the application when
running (for example, Run or Paused) or other editing properties such as: current line
and column, size of the selected control on a form, and more.

• The Workspace window – displays the content of the current workspace file in a tree-
like view. This window contains two tabs: Objects and Files. The Objects tree view
displays all files objects opened by the IDE: project files, modules such as drivers,
system or programs, and their submodules such as procedures, and variables. The Files
Tab is used to displays the current workspace project and module files without
showing the files submodules. The user can perform editing commands on the objects
displayed in the tree. Double-clicking on an object/file opens the document view used
to display and edit the object/file.

• The Properties window – displays the properties of the currently selected object.
Clicking on an object in any of the ATEasy windows can set the currently selected
object. The properties window contains pages, each of which displays a partial list of
the object properties. The user may change the object properties by changing the values
displayed in this window.

• The Log window – contains three log pages. The Test log displays the test results
when the application is running, the Build log displays the build progress and compiler
errors, and the Debug log displays trace statement output when the application is
running. The test log displays a report automatically generated by ATEasy when a test
program is running. It can display the results in Text format or HTML format, which
provides more formatting options.

32 Getting Started with ATEasy

• Debug windows – used to display debugging information about the running
application. Includes the following windows:

• Call Stack/Locals – displays the variables values of modules variables and
procedures variables. When the application pauses, the user can change the
values of variables.

• Watch – displays expressions, local or global variables that the user input to
this window. When the application pauses, the expression is evaluated and its
value is displayed in the window.

• Debug – used to type programming statements. When the application pauses,
the user can run the code to evaluate expressions and to perform certain
operations at run-time for debugging purposes.

• Monitor – used to display communication data between the application and a
device (for example, an instrument) through an ATEasy interface (for example,
GPIB).

• MDI Child Window showing a Document View window – displays a module and its
objects. The window is divided to two panes by a vertical splitter. The optional left
pane (not shown here) displays a tree view containing the module submodules and
objects. The right pane displays the object being edited, (in this example the
SimpleForm is shown), which is selected in the right pane or from the workspace
window. Clicking on an object in the tree view causes it to be displayed in the object
view. Clicking on the MDI Child Tab can activate MDI child windows.

• Auto Hide Windows – the Log, Workspace and Debug windows can be displayed in
several display modes: Float displayed a stand alone window anywhere on the desktop,
MDI child displayed in the main window as a document view or Docked to the sides
of the main window. Changing the display mode for these windows can be done by
right click on the caption. When a window docked it can also be set to Auto Hide
preserving the main window space by hiding when not needed and displayed when the
mouse cursor is above the window. Changing the Auto Hide can be done by clicking on
the pin image on the caption of these windows. Docked window can also be expand or
collapse by clicking on the down or up arrow on their caption.

Once used, you will find that the IDE is consistent and object-oriented and is geared for
rapid application development. This provides you with a tool that is fast, intuitive, and
easy-to-use in order to create ATEasy applications.

C H A P T E R 4 – Y O U R F I R S T P R O J E C T

About Your First Project
This chapter discusses how to create a test application with one program using ATEasy’s
Application Wizard. After creating the application, you will learn how to create tests in the
program and then how to build, run, and debug the application. You will also add a user
interface to the application allowing the user to control the test application with the Test
Executive driver supplied with ATEasy. Use the table below to learn more about this
chapter’s topics:

Topic Description
Starting ATEasy How to start ATEasy
Application Types What are the types of ATEasy projects
Creating an Application How to create your first application using the

Application Wizard
More About the IDE Key concepts of the ATEasy IDE
Your First Test Program How to add tasks and tests to your application
Test Properties What are the properties of ATEasy tests
TestStatus and
TestResult

Learn about these important internal variables

Running Your First
Application

An overview of running an application for the first time

The Log Window The Log Window and the information it provides
Adding the Test
Executive Driver

Demonstrates a way to add user interface to your
application that lets the user control the running of test
programs, log results, and more.

Using the Test
Executive

Describes how to run and use the test executive.

More About Test
Executive Driver

Describes other features available in the test executive
such as multiple users support and touch panel support.

Building and Executing
Your Application

How to build and execute an application after it has
been created.

34 Getting Started with ATEasy

Note: A copy of the project that you will create throughout this Getting Started Guide,
MyProject.prj, is located in the …\ATEasy\Examples folder, along with all of its associated
files.

Chapter 4 – Your First Project 35

Starting ATEasy

Once ATEasy has been set up, the ATEasy icon appears on the desktop.

 To start ATEasy, follow these steps:

1. Double-click the ATEasy icon or, select ATEasy from the ATEasy menu under
Programs on the Start menu.

The first time you start the program, the following screen appears:

Client
Area

Workspace
Window

Log
Window Startup

Dialog

36 Getting Started with ATEasy

This screen represents the ATEasy Integrated Development Environment (IDE). At first the
main window displays two empty windows (Workspace and Log) and the Startup dialog.
The Startup dialog allows you to create a new application using the application wizard, it
also let you open recent, drivers and examples workspace and project files. The Workspace
window displays objects representing document shortcuts and objects opened in the IDE.
The Client area is where you will do the majority of your work (adding and editing code,
etc.). The Log window is displayed on the client area and showing the Test Log tab that is
used to record print statements that your application may have or the default output of a
test program. These areas will be covered more fully later in this chapter.

Before creating your first application, you must learn about the application types available
when you use the ATEasy Application Wizard to create the application.

Application Types
There are three different types of ATEasy applications available when you use the
Application Wizard to create your application. The following types are available:

• Test Application - the most common ATEasy application type. The project has
multiple programs and a system. In such projects, each program is used to test a single
UUT. You can select the first program to run upon loading. The other programs run
when invoking the run statement in your code in most cases, although a form lets the
operator select which program to run.
By default the Test Application includes two special drivers. The first driver called
TestExec.drv that provides a user interface to your application for running, debugging,
and generating test reports for the test programs when they run. The second driver
Profile.drv allows you to create and run profiles that enable you to run selected
programs, tasks and tests in a custom sequence. A third driver FaultAnalysis.drv allows
you to define Fault Conditions that are used to analyze your test results and thus
provide a powerful troubleshooting tool.

• Instrument Panel Application – the project contains a system with one or more
drivers, and no programs. Typically, you will create this project to provide a window
allowing the user to view or control an instrument settings interactively, or a control
panel that is used for process control. As an example, you could have a virtual
instrument of a switch matrix displayed while debugging a test program. The virtual
instrument would display the status and configuration of the switches while the
program is running.

• Other Application – a generic project containing any modules you select or create.
The user may add a new or existing program, system, and drivers when creating the
project.

Chapter 4 – Your First Project 37

Creating an Application
You may create an application in one of two ways. You may use the ATEasy Application
Wizard or create a new project and then manually insert new or existing programs as well
as a system and drivers files to the project. In this section we will use the Application
Wizard to get a “jump start” and create your application.

 To start the Application Wizard:

1. Select New from the File menu or click on from the Standard toolbar or just use the
Startup dialog shown in the previous section.

The New dialog box displays as shown here:

2. Select Application Wizard from the list and click OK. The Application Wizard
appears.

38 Getting Started with ATEasy

 To set the Project Name and Location:

1. Type MyProject for the project file name and C:\MyProject for the project location as
shown below. ATEasy creates the folder if does not exist.

2. Make sure the checkbox is selected for Create New Workspace and type the
Workspace name and folder as shown here.

3. Press ENTER or click the Next button to continue to the next step.

Note: By default ATEasy files are created in binary format. ATEasy files can be saved in
the Text format. This allows merging when several users are working on the same the file.
It also offers better support for version control software such as Microsoft Visual Source
Safe.

Chapter 4 – Your First Project 39

 To select the Application Type:

1. Select Test Application as the project type.

2. Uncheck Include the Test Executive driver, the Profile driver and the Fault Analysis
driver. The dialog should look as follows:

3. Click Next to continue.

We will include the test executive driver later in this chapter.

 To create the application:

1. The next screen sets the program file name and defaults to the project name and
location (C:\MyProject\MyProgram.prg). Rename the Program name to
MyProgram.prg and click Next to continue.

2. The next screen sets the system file name and defaults again to the project name and
location (C:\MyProject\MyProject.sys). Rename the System name to MySystem.sys
and click Next to continue.

40 Getting Started with ATEasy

3. The last screen in the Application Wizard allows you to select drivers. While you are
not going to add any drivers here, to access a list of drivers, click the new driver icon

 on the toolbar. The driver list is now available. Click the ellipse button to
obtain a list of drivers (the default driver location is the ATEasy Drivers folder, for
example, C:\Program Files\ATEasy\Drivers).

4. Click Finish. The Application Wizard displays a confirming dialog box. This box lists
the choices you have made through the Application Wizard. Click OK to create the
files required for the new application.

After ATEasy generates the application files, the files are loaded to the IDE and the
Workspace window displays the newly created project file and its contents. The two new
modules, the program, MyProgram.prg, and new system, MySystem.sys, are displayed in
Document Views windows. Each window is divided into tree and object views with a
splitter that can be moved to separate the two views.

Chapter 4 – Your First Project 41

More about the IDE
Before you go any further with building your application, there are a few key concepts to
understand about the ATEasy IDE. These are:

• Active Project – the workspace may contain
multiple projects. It is important to understand
which project is active, since the Build, Run, and
Debug commands apply to the active project. The
workspace window shows the active project in
boldface. You can set the active project by
selecting the project to make active and select the
Set Active Project from the File menu.

ANTSM1 and ANTM2 are
projects: ANTTM2 is the Active
Project.

• Selected Object – objects are displayed in the

IDE windows with their image representing their
type and name. Clicking on an object such as a
procedure or a variable will make that object the
selected object.
The selected object properties such as type or
name are displayed in the Properties Window.

As shown here the variable i is
the selected object.

Edit commands such as Cut or
Paste work only on the selected
object.

• Active Document – The active document is the
document or file where the selected object
resides. File Operations such as the Save
command apply to the active document.
The Active Documents shown here are
MyProgram, (MyProgram.prg) program, and the
system, MySystem.sys. Note that even though
the workspace document is the workspace file,
the active document is the program, since it owns
Tests, which is the selected object.

42 Getting Started with ATEasy

• Dockable windows – Dockable windows can be
docked to any side of the IDE main window by
dragging their title bar close to the border of the
main window.
Dockable windows in ATEasy are the built-in
windows: Workspace, Log, Variables, and all the
debug windows (for example, Watch window).
Dockable windows can be in one of the tree
states: Docked, Float, and MDI Child.
You can see the differences between the states of
these windows by right clicking on the diamond
button appearing on the dockable window title
bar.

The dockable workspace
window shown here is in docked
state.

• MDI child windows – MDI stands for Multiple
Document Interface. The interface displays
multiple documents in the main window. Each
document is in its own window, called an MDI
Child window. In ATEasy, all the document
views as well as the built-in windows (for
example, the Log Window) are displayed as MDI
Child windows. The windows are displayed in a
rectangular area called the MDI Client area. It is
typically surrounded by docked windows, with
the status bar below and toolbar(s) above.

An MDI child window can be
activated by clicking on the
window or on the Tabs
appearing below the MDI client.

The second Tab referring to a
document view displaying Tests
in MyProgram.prg is the active
MDI child.

• Tree views – Both document views and the
workspace window contains tree views. The tree
view displays objects in a tree control, each with
an icon representing its name. Additionally, a
plus/minus sign indicates if the object can be
expanded or collapsed. You can perform many
editing operations on objects via the tree view
such as: Rename (F2), Cut, Copy, Paste, Drag
and Drop, or other operations from the Edit and
Insert menus. Clicking on the object with the
right mouse button invokes the object context
menu as shown here.

• Description View and Description Button –
Most objects views allow you to enter description
text (notes) to describe and document the object.

The button can be pressed or
empty (no text entered).

Chapter 4 – Your First Project 43

Your First Test Program
Your first program contains one task (Power Tests) and two tests (PS1 and PS2). Define the
test requirements by first defining the test type and filling up the test properties. Then, write
some code in the test to tell ATEasy the test result. Consequently, when you run this
program you will see actual test results.

The next step is to add tasks and tests that will be part of your program.

 To add a task and tests:

1. Activate the MyProgram document view and click on the Tests submodule in the tree
view. If the document view is not visible, double-click on the MyProgram program
shortcut.

2. Select Task/Test Below from the Insert menu or from the standard toolbar. A new
task and a test are inserted below the Tests submodule.

The Tests view is shown here:

Horizontal Splitters

Description Button

Test Views

Test Code View

Module Tree View

Task Views Test Header

Test Description View

Vertical Splitter

Tests View (Object View)

44 Getting Started with ATEasy

The Tests View displayed in the object view displays a split view with two horizontal
splitters and one vertical splitter. The following areas are displayed as shown in the
previous diagram:

• Tasks View – a tree view lists the tasks and tests comprising the program. Selecting a
task in this view makes it the Current Task.

• Tests View – a list of all tests belonging to the selected task within the Tasks View.
Selecting a Test in this view makes it the Current Test.

• Test Header – shows the current task name and number, as well as the current test
name, type, and properties. The header also contains the Description Button used to
show or hide the Test Description View.

• Test Description View – a text editor where the current test description is entered.

• Test Code View – a text editor where the current test programming code is entered.

 To rename the Task and Test:

1. Change the name of the task by clicking on the Untitled Task name and typing Power
Tests. Note that if you clicked on the task image (icon), the tree view will not be in
renaming mode (clicking on the image changes the selected object). You must click on
the name to enter editing mode.

2. Do the same for the Untitled Test and rename it to PS1.

 To switch to Object View Only:

At this point, the document view displays the tree and object at the same time. Since you
are planning to work only with the object view, it would be nice to have a larger work area
on the screen.

1. Select Object Only from the View menu. The tree view disappears and the object view
is displays on the whole client area of the document view.

 To insert the PS2 Test:

1. To add another test, highlight Test #1 in the Tests View (PS1) and then select Test
After from the Insert menu or from the standard toolbar. A new test is inserted
after PS1.

2. Rename the new test from Untitled Test to PS2.

Chapter 4 – Your First Project 45

The document view should now look as illustrated in the figure below:

While you have added the tests, you have not set any test properties. Continue with the next
section to learn how to set the test properties.

46 Getting Started with ATEasy

Test Properties
Task and Test, like all other ATEasy objects, have properties. In the case of a Task, the
properties include basic information such as name, ID, and description. However, the Test
properties include additional information regarding the test type and other properties used
at run-time to determine whether the test passed or failed.

 To display the Test Properties:

1. Open the PS1 context menu by clicking the right mouse button on PS1 and selecting
Properties . .

The properties window opens as shown here:

Most of the Test’s properties are common to all tests. Some properties however are
different from one test type to another.

Chapter 4 – Your First Project 47

The common properties are:

In our example we will use the MinMax test type. In the MinMax test you set the
Minimum and Maximum number allowed for the test result so the test will have a PASS
status. If the test result is higher than the Max value, or lower than the Min value the test
status will be FAIL.

Property Description
Name The Name of the test. Names are not unique and more than one

test or task may have the same name. They appear in the test log
report when the application is running, and are used by the
operator to identify the test.

ID Test ID is a unique identifier used with programming statements
to identify the test uniquely. Typically, they are used with task or
test statements that are used to branch to another task or test at
run-time.

Type Test Type. Can be MinMax, Ref2, RefX, Tolerance, Precise,
String, and Other. The test type sets the requirements
determining if the test status is PASS or FAIL at run-time.
Changing the test type changes the available properties in the
properties window. Please refer to the next section Test Status and
Test Result for additional information.

Pin The Pin where the measurement is being taken. This is a list of
user-defined UUT pins. Once you enter a pin name, it is added to
the list automatically.

Unit The Units of measurement. Common units such as “Hz,” “Volt,”
“Ohm,” etc. are available and you may add additional Units. Once
a new Unit is entered, it is added to the list automatically.

Description A description of the test for documentation purposes. You can
expand the size of this edit box by clicking on the maximize
button located on the right of this edit box.

Synchronize
 (Misc Page)

Used for multi-threading or Multiple UUTs with parallel run
mode applications. When Synchronize is checked, it allows only
one thread to execute the test with the specified (optional)
resource name, other threads executing tasks, tests or procedures
with the same resource name will be suspended until the test is
complete.

Tag
 (Misc Page)

Application specific data that is attached to the test and can be
used by programmatically by the application.

48 Getting Started with ATEasy

 To set the Tests’ Properties:

1. Enter the following properties for PS1:

Pin P1-13
Unit Volt (you either type this or select from the combo box list)
Min 1.25
Max 1.35

2. Select the PS2 test, and enter the following values in PS2 Test Properties:

Pin P1-14
Unit Volt
Min 2.45
Max 2.55

The next section discusses the properties of the Test Status and Test Result.

Test Status and Test Result
As discussed earlier, the output of the test is a single measurement result. This result should
be stored in an ATEasy built-in internal variable called TestResult. Upon completion of a
test, ATEasy automatically evaluates the test status according to the test’s properties and
the TestResult variable value, and assigns a value to another internal variable called
TestStatus. This value can be any of the following constants: NONE, PASS, FAIL, or
ERR. The value will be used when printing the test result to the test log report.

TestResult and TestStatus are pre-defined internal ATEasy variables. TestResult is
defined as the type Variant. This type of variable can accept different data types such as
Integers, Float, or String. TestStatus is an enumerated type (Enum).

Chapter 4 – Your First Project 49

The following table describes the available test type and their properties:

Test Type Properties

Evaluation performed by ATEasy

MinMax Min, Max Analog test where TestResult is compared against
Min and Max. TestStatus is PASS if TestResult
is between the two.

RefX Mask, Ref Digital test (hexadecimal) in which TestResult is
compared against Ref ignoring the bits specified as
Do not Care in Mask. TestStatus is PASS if
TestResult is equal to Ref (except for masked-out
bits).

Ref2 Ref-2 Typically used with digital tests where data
compares the 32-bit (long) TestResult with a
binary reference mask Ref-2, ignoring the bits
specified as "don't care" (x). If the result and the
reference/mask are identical, the TestStatus is
Pass.

Tolerance Value,
PlusValue,
MinusValue

Analog test in which TestResult is compared
against Value. TestStatus is PASS if TestResult
falls within the Value minus MinusValue, and
Value plus ValuePlus.

Precise Value Analog test in which TestResult is compared
against a precise Value. TestStatus is PASS if
TestResult is equal to the Value property.

String String TestResult is compared against a string.
TestStatus is PASS if TestResult equal to the
String property.

Other None ATEasy performs no automatic comparison. This
test type is used when none of the above
evaluations fit. You can write an evaluation code
and assign the status to the TestStatus variable.

Normally, test code contains code to set up the switching and measurement instruments. A
measurement will be taken and then assigned to TestResult as shown in the following
example:

RELAY Close (7)

DMM Measure (TestResult)

50 Getting Started with ATEasy

For this example, we are going to enter sample data to set the TestResult without writing
any setup or measurement statements.

 To set TestResult of the PS1 and PS2 tests:

1. Select PS1 from the Tests View.

2. As shown below, click in the Test Code view.

3. Type: TestResult=1.12 as shown here:

4. Repeat steps 1-3 for the PS2 test. The value for PS2 is TestResult=2.5

As you can probably see, the tests are set for one to FAIL and one to PASS when you run
them. Continue with the next section to learn how to run the application.

Chapter 4 – Your First Project 51

Running Your First Application
Your application is now ready to run. To run the application, use the Start command from
the Run menu. Other Run commands are available. They are used to abort or pause the
running application and change the way the test program is run.

The Abort command is used to stop the application from running, while the Pause
command will suspend the application. Once the application pauses, you may use other Run
commands such as Current Test to repeat running the last test, Skip Test to skip the
current test to the next test, and others.

ATEasy also lets you set conditions causing the application to pause when the condition is
met. You can use the Task By Task, or the Test By Test to pause in the beginning of each
task or test. Another condition that can be set is the Stop On Failure command, which lets
you pause when a test fails.

Other debugging commands are available from the Debug menu. These provide code level
debugging. Using debug commands you can use the Toggle Breakpoint command to pause
on a specific line of code. You can use the Step Into, Step Over, and Step to Out to walk
through the lines of code.

To run the program for the first time select Start from the Run menu. ATEasy compiles the
required parts of the application and starts running the application. As the program runs, a
window appears displaying the test results report. This window is the Log Window.

The Log Window
The output of any test program is the test results. This data is essential information required
to determine if the Unit Under Test has passed all the tests and if not, what were the
failures. ATEasy provides this (and other) information through the Log Window as shown
below. The Log Window is a dockable window with three tabs and can be shown by
selecting the Log Window command from the View menu or from the Standard toolbar.
This log is automatically generated when the program runs.

52 Getting Started with ATEasy

Before you go any further, click the docking button to cycle through the positions of the log
window and switch to the MDI Child Window as shown here:

There are three pages in the log view:

• The Test Log displays the test results generated by ATEasy automatically when you
run a program. The test results include some information about your program: for each
task that was running, its number and name are output; and for each test its number,
name, pin, unit, test type requirements such as Min or Max, test result, and the test
status are output. The end of the test log report contains summary information including
the status of the UUT. ATEasy determines this from the status of the tests you ran.
When debugging the application, ATEasy appends a description of the actions taken by
the user, such as abort, or skip test, to the test log. This can be later used to track and
replicate user actions in order to analyze and debug the UUT. You can select the
Log Failures Only from the Conditions menu if you wish the log to display only the
failed tests results.

Chapter 4 – Your First Project 53

The format and the content of the test log can be customized. For example: you can set
the test log to display in HTML format instead of text to provide more readable output
including various fonts, color, graphics, and more. You can include an image showing a
chart of data that the application acquired. You can disable ATEasy from outputting
anything to the log and use the print statement or other log functions from the internal
library to output any data you wish.

• The Debug Log displays information printed from programs for debug purposes. The
output to this window is usually done using the trace statement.

• The Build Log displays ATEasy compilation information including any actions taken
by ATEasy (such as Compiling, etc.) and error messages.

Scroll to the right to see that PS1 has a status of Fail, while PS2 has a status of Pass.

Adding the Test Executive Driver
By now, you have now your first application in ATEasy. However, the application that you
ran did not have any user interface. The output it generated was displayed in the IDE’s Log
Window. As discussed in Chapter 3, when you use the Build command from the IDE, the
project is compiled and the result is an executable file that can be run independently of the
IDE (similar to any Microsoft Windows application). The executable still needs a user
interface. ATEasy, similar to other programming languages, supports building of custom
user interfaces, allowing you to design your own windows with controls and menus. These
windows are called Forms and you can use them to design your own test executive. In this
chapter, we will use the Test Executive, TestExec.drv driver supplied with ATEasy to
provide our application user interface. This driver will be added to the application system to
provide a test executive for your application. In “Chapter 8 – Forms,” you will design your
own user interface.

 To add the test executive driver to your application:

1. From the workspace window, expand MyProject by clicking on the plus sign next
to its image. Expand the System in a similar way and then select Drivers.

2. Right-click on Drivers. The Drivers context menu appears. Select Insert Object
Below . The Insert Driver dialog appears as shown here:

54 Getting Started with ATEasy

Note: If the window does not show any .drv file. Your Windows explorer is
probably set the hide files that have the .drv extension. To show these files, Run the
Windows Explorer and select Folder Options… from the View menu. Then Click
on the View tab and check the Show All Files option.

3. Select the TestExec.drv driver from the ATEasy Drivers folder, and click Open to
insert the driver. The driver is added to the Drivers folder in the system. In
addition, a new document view is displayed in the IDE displaying the
TestExec.drv. Note: After the TestExec driver is inserted you can disable it
(without removing it from the System) by setting the Driver Shortcut Disable
parameter to 1. To access the driver shortcut parameters page, right click on the
TestExec in the Workspace window and Select Properties and then click on the
Misc page.

Chapter 4 – Your First Project 55

4. You may repeat steps 1-3 to insert the Profile.drv driver. The profile driver allows
you to create and run profiles that enable you to run selected programs, tasks and
tests in a custom sequence. The Profile driver must be inserted before the Test
Executive driver (use Insert Driver At command when the TestExec driver is
selected). Once this driver is inserted the test executive menu will show special
commands that allow you to create, edit, select and run profiles saved in profile
files.

5. You may repeat steps 1-3 to insert the FaultAnalysis.drv driver. The Fault
Analysis driver allows you to create conditions that are based on the program tests
results. The operator can use this to troubleshoot and recommend ways of fixing
the UUT. The Fault Analysis must be inserted before the Test Executive driver (use
Insert Driver At command when the TestExec driver is selected). Once this driver
is inserted the test executive menu will show special commands that allow you to
create, edit, and analyze conditions saved in a condition file.

Using the Test Executive Driver
The test executive main window is an ATEasy Form displayed by the test executive driver.
The main contains a menu, toolbar, status bar and a Log control to display the test results of
the running program. The test executive provides support to differenet execution models of
your project programs, these includes sequntial mode, parallel mode and mixed mode.
These modes are mainly used when executing multiple UUTs and test programs at the same
time (parallel mode) or in sequence (sequential mode).

56 Getting Started with ATEasy

 To use the Test Executive:

1. Select Start from the test executive Run menu. MyProgram will run.

Notice the test log is now displayed in HTML format as shown here:

The Test Executive main window is divided to three panes: the Tests pane, the Test
Properties pane and the Log pane. The Tests pane displays the current program or
profile that is a subset of your application tests in a tree view. Each node in the tree has
a checkbox that allows you to include the test or exclude it from running. The Test
Properties pane display the current test properties including its name, its type the
required values, result and its status. The Log pane displays the test log report showing
the test log report in either text or HTML format.

Chapter 4 – Your First Project 57

At run-time when the test executive executes a test, the test node is highlighted and
colored according to the test status (red for fail, green for pass, black for none), the test
properties pane displays the test properties and result and the test log is appended with
the test’s result.

The test executive log report and the test executive window features are fully
customizable from the test executive driver commands or by using the View menu or
Options dialog. In addition, if the profile driver (profile.drv) is also included in the
system, additional menu items will show to allow you to create, select and run test
profile using the profile editor.

If you browse through the test executive menus, you will see that the test executive has
commands allowing you to select which program to run (Program Menu). The Run
and Conditions menus contain commands similar to the IDE Run menu, and the Log
menu lets you save, clear, or print your test log.

2. Choose Exit from the Program menu. This exits the application and returns to the IDE.

You may want to browse through the test executive driver submodules to see how this
driver implements the user interface displayed through the test executive window. Look
under Forms to see the form that is used to create the main window of the test executive.
Other interesting code resides under the test executive Events submodules. This is where
the driver controls the test programs’ behavior and implements some of the Run and
Conditions statements. We will cover these topics in later chapters.

You have now created and tested a very simple application. Adding the test executive
driver to the application allows you to provide a test executive to your application quickly.

More about Test Executive Driver
Not only the test executive driver provides a convenient user interface for your test
programs, but also it provides multi users environment where the administrator creates user
groups and user accounts. User group such as “Testers”, “Supervisors”, “Administrators”
will be assigned with its own set of command menus, toolbars, options and different level
of privileges. (Please refer to the TestExecUsers example in the ATEasy Examples.) Each
user account will inherit the specific settings of the user group it belongs to. An
administrator will have full privileges of the Administrators group.

58 Getting Started with ATEasy

Furthermore, the test executive driver provides two modes of UI operations: Modal and
Modeless. The Test Executive main window shown in ‘Using the Test Executive Driver‘ is
the user interface in Modeless mode where you can access its commands through menus
and a toolbar. In Modal Mode, Test Executive does not have menus and a toolbar; instead
it has a series of buttons’ forms, each consisting of command buttons in full screen. The
Modal mode is used to support specifically for Touch Screen user interface in which all
operations are performed by ‘touching’ the button controls instead of keyboard and mouse
operations. It also provides a more directed and ‘simple to use’ user interface.

In Modal mode of Test Executive, the main window displays common commands as shown
here:

You can switch between the two modes of user interface by opening the Customize or
Users dialog (Options Page) from the test executive Tools menu.

Chapter 4 – Your First Project 59

In Modal Touch Panel mode, Test Executive uses a virtual keyboard for user input as
shown below:

Whenever the Text Executive requires a user input, the virtual keyboard will automatically
appear so that the user can input necessary information.

More information about the Test Executive driver is available in the ATEasy online help.

60 Getting Started with ATEasy

Building and Executing Your Application
You are now ready to build and execute your program. If you go to the Properties page for
your project, you can see the default Application Target Type, the EXE file and Target File
name, which will be created:

 To build and execute your application:

1. Select Build from the Build menu. Note that the Build Log tracks the compiling
process and indicates when it finishes. Once the Build finishes, an EXE file is created.

2. Select Execute! from the Build menu to run the EXE file you just created. Alternately,
you can use Windows Explorer to run the EXE file as in other Windows application.
Your application will now run.

You can freely distribute the EXE file generated by ATEasy to your end users. Similar to
other programming environments, the end user must install the run-time version of ATEasy
as well as all external files your application uses, such as DLLs and ActiveX controls.

Before continuing to the next chapter, you need to remove the test executive driver from the
system.

Chapter 4 – Your First Project 61

 To remove the test executive driver from the system:

1. Select the TestExec driver, in the Workspace window.

2. Select Delete from the Edit menu. The driver is now removed from the system.

3. Click Save All from the Standard toolbar to save your work.

4. You will be prompted to enter a file name for a workspace file. Type
C:\MyProject\MyWorkspace and click OK.

Continue with the next chapter to add variables and procedures to your project.

C H A P T E R 5 – V A R I A B L E S A N D P R O C E D U R E S

About Variables and Procedures
This chapter discusses how to create and use ATEasy variables, data types, and procedures.
You will declare two program variables: i, adSamples. The first one will be used as a loop
counter, while the second will be defined as an array. It will contain values to be passed to a
procedure named Average. You will write this procedure to calculate the average of an
array.

You will also learn about ATEasy statements and the internal library. Use the table below
to learn more about this chapter’s topics.

Topic Description
Variables and Data
Types

About the variables and data types supported by ATEasy.

Variables Naming
Conventions

Guidelines for naming variables and how to declare a
variable.

Declaring Variables How to declare a Variable.
Variable Properties What Variable Properties are and how to set them.
Procedures What Procedures are.
Creating a Procedure How to create a procedure.
Procedure Properties What Procedure Properties are and how to set them.
Procedure Parameters
and Local Variables

Guidelines to procedures’ variables and parameters, how
to create them, and how to write procedure code.

Calling the Procedure
from a Test

How to use (call) a procedure from an ATEasy program.

Debugging Your Code About ATEasy debugging tools and how to use them.
More About Writing
Code

Additional information regarding writing code.

The Internal Library What the internal library is and procedures it includes.

64 Getting Started with ATEasy

Variables and Data Types
A variable is an area in the computer memory used to store data of a specified type. A data
type defines the type, range, and size of value or values that can be stored in a variable.
ATEasy has a wide variety of many basic data types built into the language. These data
types are divided into the following groups:

• Signed Integer numbers: Char, Short, Long and DLong for 1, 2, 4, and 8 bytes
integers that can contain positive or negative values.

• Unsigned Integers numbers: Byte, Word, DWord and DDWord for 1, 2, 4 and 8
bytes integer that can contain only positive values.

• Floating point numbers: Float is 4 bytes and Double is 8 bytes floating point data
type.

• Character strings: Strings can be defined for fixed or variable length strings used to
hold ASCII characters. Each character is based on the Char data type. BString is used
to hold Unicode characters based on the Windows internal data type that is used to
communicate with COM objects. Each character is based on the WChar data type
where a single Unicode character is stored in 2 bytes.

• Object data type that is used to hold instances of COM or .NET classes or controls.
Object data type can be created from ATEasy internal library (that is COM based) or
using external library. See chapter 9 for more information.

• Misc. data types: including: Bool – which can hold two values, either True (-1) or
False (0); Variant – which its internal data type can changed dynamically as you assign
values of different types; and Procedure – which is used to hold an address of a
procedure. Other available data types are: Currency and DataTime which are data
types that are used sometimes for communication with external libraries.

ATEasy also supports user-defined data type. These include Struct, Enum and Typedef.
Struct defines new data that contains several fields, each with its own data type grouped
together defined as one data type. Enum defines one or more integer values each with its
own name and Typedef, which provides a user-defined name or alias to another type
name.

Chapter 5 – Variables and Procedures 65

Variable Naming Conventions
ATEasy uses prefixes for naming variables in its internal library. While these are not
requirements when creating variables, we recommend these conventions be used whenever
a variable is declared. Prefixes are based on the variable data type and used to identify the
data type without checking how it was defined. This expedites the debug and maintenance
process as well as the coding standard that is important when multiple users are working or
debugging the same module.

The recommended format of variables names is shown below:

[scope] [pointer] [array] [Type] VariableBaseName

Where:

• Scope refers to public (g_) or non-public (m_) driver or system variables. Procedure or
program variables do not have a scope prefix.

• Pointer refers to VAR parameters or pointers having the p prefix.

• Array indicates the variable is an array by using the a prefix.

• Type is one of the types as follows:

c for Char, n for Short, l, i or j for Long and dl for DLong (for example, lCount).

uc for Byte, w for Word, dw for DWord and ddw for DDWord(for example,
dwMask).

f for Float, d for Double (for example, dResult).

s for String and bs for BString (for example, sText).

b for Bool, v for Variant, cy for Currency, dt for DateTime, ob for Object, en for
Enum and st for Struct (for examples, bModified, cyTotalAmount, vKey…).

• VariableBaseName refers to the name of the variable. This should be one or more
words with no spaces or underlines between them. Each word starts with upper case
characters and continues with lower case characters (for example, nNumOfSamples)

As an example, the following variable is a public module array. Each element in the array
has a type of Double:

g_adSampleResults

Other rules imposed by the ATEasy programming language for naming identifiers must be
followed. These rules set the maximum number of characters for a name: 256 characters,
the allowed characters for starting identifier: _, A-Z, a-z, and the allowed characters
following the first character A-Z, a-z, 0-9, _.

66 Getting Started with ATEasy

Declaring Variables:
For ATEasy to recognize and use a variable, it must be declared first. When declaring a
variable, you can determine its name and data type as well as give it a description for
documentation purposes.

 To declare program module variables:

1. Double-click on the Variables submodule below MyProgram in the Workspace
window. A Variables view opens displaying three columns: Name, Type, and
Description.

2. Right-click on the view and select Insert Variable At from the context menu.
A new variable is created and displayed in the view. An edit box displays allowing
you to rename the variable name.

3. Type the name: i.

4. Right-click on the i variable and select Insert Variable After . A new variable
is created and inserted after i. Rename it by typing adSamples.

Your screen should now look similar to the following:

Chapter 5 – Variables and Procedures 67

Variable Properties
The next step is to set the properties of variables that you defined. The first variable, i, is
declared as Long. The second variable, adSamples, will be declared as a one-dimensional
array holding 20 elements of type Double.

 To set the properties of the variables:

1. Right-click on the variable and select Properties . Alternately, you can double-
click on the variable icon, or select the variable and choose Properties from the
View menu or from the Standard toolbar.

The Variable properties window displays as shown below:

The properties of a variable include Name, Type, array dimension (Dim) and size
(Dim Size), description (Desc) , and Public (The Public does not show here since
it is not applicable for program variables). The Public property indicates whether
this variable can be used from other modules. The Value property page contains
the variable’s initial value, and whether the variable is constant and cannot be
changed programmatically (the const property).

2. Click in the Desc field and type Loop Counter for the description.

3. Leave the Properties window open and select the next variable adSamples. Note
that you do not have to close the Properties window; the properties window updates
and displays the object you selected. Repeat steps 1-2 for adSamples and type
Array of 20 samples in the description field.

4. Click the drop down arrow next to the Type combo box and select Double as the
type. Set the Dim to 1, the Dim Size to [20].

68 Getting Started with ATEasy

Procedures
A Procedure is a set of command instructions that can be executed at run-time as one unit.
A Procedure that returns a value is called a function. A Procedure that does not is called a
subroutine. Procedures typically contain code used multiple times throughout the
application. By using procedures, the total code is reduced, improving code reuse and
maintenance of your application.

Procedures typically have a name, parameters, local variables, and code. The name is
used when calling the procedure. Parameters are variables used to pass arguments
containing values from the caller to the procedure. Code is programming statements
included in the procedure, and local variables are used within the code if intermediate
values need to be stored in the procedure while it is executing.

Several types of procedures exist in ATEasy:

• User Procedures – These procedures are defined under a Procedures submodule or in
a Form Procedures submodule. User procedures contain code written by the user. The
code may contain calls to other procedures or even to the current procedure (recursive
call).

• Events – Events are ATEasy procedures called by ATEasy when an event occurs. Two
types of events are available in ATEasy: Module events and Form events. Module
events are called to notify the module that a certain event occurred in the application,
for example, OnAbort is called when the application is aborted. ATEasy calls form
events because of user interaction with a form, menu, or control. Examples of form
events include OnClick, OnMouseMove, and more. Events names and parameters are
pre-defined by ATEasy and cannot be changed by the user.

• IO Tables – These are procedures used to send or receive from a device or instrument
using an ATEasy interface such as GPIB. An I/O table does not contain code; rather; it
contains I/O operations.

• DLL – These are procedures residing in, and exported from, an external library (DLL).
You can define and call them in ATEasy.

• Type library/COM or .NET methods and procedures – These are similar to DLL
procedures as they reside in an external library. They are defined automatically when
you import the COM based Type Library or .NET assembly describing these
procedures.

Chapter 5 – Variables and Procedures 69

Creating a Procedure
 To create a program module procedure:

1. Select Procedures from the Tree View.

2. Right click on Procedures and select Insert Procedure Below on the context
menu. The Procedures View opens displaying as shown here:

The procedures view display the module procedures in a combo box on the top of the view.
Below it is an area where the procedure description can be entered. The procedure
parameters and variables area follows this and the procedure code area is displayed at the
bottom of the view.

The procedures combo box displays the available procedures and is used to select the
current procedure. The other areas display the current procedure description, variables,
and code.

Procedure1 is the newly created procedure. It is the current procedure. The return type was
set to Void indicating the procedure does not return any value and is therefore a
subroutine.

70 Getting Started with ATEasy

Procedure Properties
In our example, you will be creating a procedure to calculate the average value of an array
containing floating-point numbers.

 To change the properties of the procedure:

1. Select Properties from the View menu or click the Properties Window tool on the
Standard toolbar. The procedure’s properties window appears:

The properties of a procedure include Name, Return value type (Returns), Description
(Desc.), and Public (the Public does not show here since it is not applicable for
program procedures) indicating whether the procedure can be called or used by other
modules.

2. Change the procedure name to Average.

3. Select or type Double from the Returns combo box to set the return value.

4. Type the following description: Calculates an average value of an array.

At this point, the procedure properties are defined. You now need to declare the procedure
parameters, variables and write the procedure code.

The Compile flag (checkbox “Compile”) is used to force ATEasy to compile and include
this procedure during build of the target file (EXE or DLL). Normally, only procedures that
are called or referenced from a test or a procedure will be included and compiled during the
build in the target file.

Chapter 5 – Variables and Procedures 71

Procedure Parameters and Local Variables
Variables used by procedures can be local variables, module variables, or parameters.
Parameters are used when calling the procedure in order to pass data and variables to the
procedure. The caller passes the arguments to the procedure parameters in the same order
they were defined as parameters. The procedure then uses the parameters to perform
calculations or any other tasks it needs to perform.

Two types of parameters are available in ATEasy: Val parameters and Var parameters. A
Val parameter receives its initial value from the argument passed to the procedure. It can be
changed by the procedure; however, that change is reflected only in the procedure while the
value of the argument is not changed. The Var parameters hold the address of the argument
variable passed to the procedure. Any change to the parameter will be reflected in the
argument variable.

Local variables are created each time the procedure is called and their initial value is set
before the procedure code is executed.

Your procedure, Average, has two parameters: ad, used to receive the array, and lSize used
to tell the procedure how many elements of the array are needed to calculate the average.

Additional procedure variables will be needed to perform the average calculation. These
are: d to hold the sum of the array elements and i to be the loop counter. The loop counter is
used to iterate through the array in order to sum the value of all array elements.

 To create the procedure variables and parameters:

1. Right-click in the variables pane of the procedure view. This is the pane with the
headings Name, Type, and Description. It appears below the procedure description
pane. Select Insert Parameter/Variable After . A new variable named Variable1 is
inserted.

2. Rename it to ad by typing or pressing F2 (if not already in edit mode) and typing.

3. Repeat steps one and two and define the following variables: lSize, d, and i. By now,
you should have four variables defined as Val Long.

4. Right-click on the ad parameter and select Properties . Set the following properties:

Name: ad
Parameter: Val
Type: Double
Dim: 1
Desc.: Array to calc average

72 Getting Started with ATEasy

5. Repeat step four for the lSize parameter as follows:

Name: lSize
Parameter: Val
Type: Long
Dim: 0
Desc.: Number of elements, use the whole array if omitted

Check the Optional check box. This allows the user to pass or not pass an
argument here.

Set the initial value from the Value property page for this parameter as –1. If the
caller will not provide this argument the value of lSize will be –1.

6. Repeat step four for d, the local variable as follows:

Name: d
Parameter: None
Type: Double
Dim: 0
Desc.: Sum of elements

7. Repeat step four for i, the local variable as follows:

Name: i
Parameter: None
Type: Long
Dim: 0
Desc.: Loop Counter

Chapter 5 – Variables and Procedures 73

Writing the Procedure Code
You are now ready to start writing the code. To average a group of numbers, you need to
sum the elements of the array (ad) and then divide the total by the number of elements
(lSize).

 To write the procedure code:

1. Type the following statements in the procedure code area:

! handle optional parameter

! if -1 or not passed then use the array size

if lSize=-1

! calc num of elements

lSize=(sizeof ad)/(sizeof double)

endif

if lSize<=0

return 0

endif

! sum all elements to d

for i=0 to lSize-1 do

d=d+ad[i]

next

! calc average

d=d/lSize

return d

The first two statements determine how many array elements to calculate the average
(lSize), followed by a For-Next loop starting with 0 and ending with the last element
you want to average (lSize-1). d is used to store the sum of all elements. The last
statement returns the average (total divided by number of elements) to the caller.

2. To verify the code was typed correctly and that you do not have syntax errors, click on
the Checkit! on the Build/Run toolbar. If no errors are found, the status bar, shown
at the bottom of the main window, should display No Errors. Otherwise, the cursor
will move to the place where the error occurred and the status bar will show a
description of the compiler error, in this case, fix the error and repeat this until No
Errors displays in the status bar.

74 Getting Started with ATEasy

The Procedure View should now look as illustrated in the figure below:

Chapter 5 – Variables and Procedures 75

Calling the Procedure from a Test
To see if the average procedure you just created works, create a test. In the test, set 20
elements in an array with values ranging from 1 to 20. Then, call the Average procedure.
The procedure should return 10.5, which is the average of the filled array. Use a precise test
type with a required value set to 10.5.

 To write a test using the Average procedure:

1. Double-click on the Tests submodule below MyProgram in the Workspace window.
The tests view should appear in a new document view.

2. Right-click on the Power Tests task, and select Insert Task After . A new task with
a test is inserted.

3. Rename the task to Procedures by typing in the edit box or pressing F2 and typing.

4. Rename the Untitled Test to Average by clicking on the Untitled Test text and typing
Average.

5. Right-click on Average and select Properties . Change the test type to Precise and
set the value to be 10.5.

6. Now enter the following code in the code pane:

! set array values 1..20

for i=0 to 19

 adSamples[i]=i+1

next

! calc average of array into TestResult

TestResult=Average(adSamples, 20)

The first three statements in this example are a simple For-Next loop filling the array,
adSamples. The next line calls the average statement and sets the result to be the test result.
Note that you could call the Average procedure by omitting the second optional argument
(TestResult=Average(adSamples)), since you are calculating the average of the entire
array.

At run-time, after the test is completed, ATEasy will use that variable to determine if the
test passed or failed.

76 Getting Started with ATEasy

The program should now look as illustrated in the figure below:

You can test your code by selecting the Testit! command from the Debug menu. This
command will run only this test. After the test runs, take a look at the test log and verify
that the test you just wrote has a “Pass” status.

In the next section, you will learn several ways to debug your code.

Chapter 5 – Variables and Procedures 77

Debugging Your Code
ATEasy provides extensive tools to allow you to debug your code. These include the
following commands:

• Continue / Pause (F4) – continues or pauses the debugged application.

• Abort (ALT+F5) – aborts the debugged application.

• Doit! (CTRL+D) – executes the current code view selection. If no code is selected,
the whole content of the code view is executed. The command is available only when
the current view is code view (in the tests view or procedures view).

• Step Into (F8) – allows you to execute your code line by line. Step Into executes the
current line and pauses. If the line is an ATEasy procedure, ATEasy pauses before
executing the first line in the procedure.

• Step Over (F10) – is similar to Step Into, however, if the current line is a procedure
ATEasy executes the procedure as a unit and pauses after the procedure is returned.

• Step Out – executes the remaining code of the current procedure and pauses at the
next statement following the procedure call.

• Toggle Breakpoint (F9) – sets or removes a special mark in your code to tell the
debugger to pause before executing the code.

• Run to Cursor – sets a temporary breakpoint at the current insertion line and then
continues execution.

Several debugging windows are also available. These let you watch the value of the
application variables during execution. These following debugging windows are available:

• Call Stack/Locals – displays variables values of modules variables and procedures
variables when the application is paused. The user can change values of variables.

• Watch – allows you to type expressions in order to evaluate their value. ATEasy
calculates and displays the value of the expression every time the execution pauses.

Other debugging commands and windows are available from the Run and Debug menus
and the View menus.

78 Getting Started with ATEasy

ATEasy contains two execution modes when executing code from the IDE. You can select
lines from the code view and execute them – this is called Selection Run Mode.
Alternatively, you can execute the application or a portion of your application (e.g. a test).
This is called Application Run Mode. You can start debugging using Selection Run Mode
when the active view (the view with the input focus) is the code view. Use the Doit!,
Loopit!, Formit!, and step commands. If the active view is not a code view, run mode is
always used.

 To use Selection Run Mode for debugging:

1. Activate the Average test code view by clicking on the test code view.

2. Select the Step Over command from the Debug menu. ATEasy executes the code in
the test. Since no code was selected, all the test code in the view will be compiled and
scheduled for execution. ATEasy will pause before starting the execution and the code
view mark area (the left bar) displays a yellow arrow showing where the execution
paused. This is the Next Statement Mark as shown here:

3. Click Step Over. At this point, the next statement advances to the assignment
statement.

4. Select Call Stack from the View menu. The Call Stack window is displayed. Notice the
current module variables and their values are displayed. i should be zero and the array
adSamples elements should all be zeros.

5. Click Step Over. At this point, the next statement advances to the assignment
statement. The first element of the array should be set to 1 as shown here:

You can repeat this step to see how the value of the program variables changes as you
step through the code.

Chapter 5 – Variables and Procedures 79

6. Set the insertion point to the line containing the call to the Average procedure. Select
Run to Cursor from the Debug menu. ATEasy continues the loop and pauses before
calling the procedure; filling the array elements values from 1 to 20. You can expand
the array in the Call Stack window to see the array elements by clicking on the + sign
next to the array.

7. Select Step Into from the Debug menu. A new document view will be displayed
showing the Average procedure code. Note also, the Call Stack window now displays
the procedure variables. The combo box displaying the call stack chain in that window
shows two items: the top one is the Average procedure and the second one the Average
test.

8. Select the second item in the Call Stack combo box. The Test is shown. Notice the
green triangle mark next to the line that called your procedure. This mark is the Call
Mark and it shows the line that called your procedure as shown here:

9. To display the next statement, select Show Next Statement from the Debug menu. The
average is displayed again.

10. Set the insertion point in the line containing the division of d with lSize. Select the
Toggle Breakpoint command from the Debug Menu or from the Standard toolbar. A
red Breakpoint Mark will appear next to the line as shown here:

11. Select Continue from the Run menu. The debugger stops where you placed your
breakpoint. At this point, you can examine the value of d in the Call Stack window.

12. Open the Watch window by selecting Watch from the View menu. The Watch window
will show. Right-click on the view, and select the Insert Object At . Type d/lSize.
The value displayed should be 10.5 as shown here:

13. To complete this debug session select Continue or Abort from the Run menu.

80 Getting Started with ATEasy

More about Writing Code
ATEasy has a large number of options and features to help you when writing code:

• You can insert flow control statements as a for…next statement by right-clicking on
the code editor where you want the statement to start and selecting the Insert Flow-
Control Statement from the context menu. This will insert text that can serve as a
template for the statement; you will need to edit it to add the missing parts.

• You can insert a symbol or a procedure call by right clicking on the code editor where
you want the symbol to start and selecting the Insert Symbol command from the
context menu. This shows a browser window with the available symbols that you can
use from the current procedure or test.

• You can use the ATEasy Auto Type Information feature to provide information
regarding procedures, variables and other programming elements. You can move the
mouse cursor on the programming element to see the syntax and a description of that
symbol.

• You can use the code completion options Parameter Suggestion and Parameter
Information to suggest parameters for procedures when you type parameters. The
syntax, type, and description of the parameter that you typed in will show in a small
tool tip window next to the insertion point.

• You can turn on the code syntax highlighting to color code the programming
statement. This makes the code more readable and shows you which words are
keywords, literals and more.

• Other code completion features are available for using objects, structures and
commands.

Additional resources explaining about the programming language elements and statements
can be found in the on-line help and in the examples provided with ATEasy.

Chapter 5 – Variables and Procedures 81

The Internal Library
ATEasy’s internal library is based on Microsoft’s Component Object Model (COM)
technology. This is a software architecture that allows software components made by
different vendors to be combined into a variety of applications using different programming
languages. COM allows you to describe programming components in type libraries. These
libraries can be imported and used by programming environments such as ATEasy. ATEasy
is supplied with a type library called the internal library. The internal library contains the
following components:

• Classes are objects containing data and procedures grouped together. Class data
members are retrieved and set using Properties. These Properties can be considered as
variables, which can be set or retrieved by using functions. Procedures in classes are
called Methods and are used to perform actions on the object. Classes also contain
Events that are called when the object notifies the application that a certain event has
occurred. Examples of ATEasy classes are: the ADriver class providing access to
driver properties set by the user at the design time, the AForm class providing a
window, and more.

• Controls are classes adhering to specific COM standards to provide design and run-
time behavior when placed on a form to provide a user interface component. Examples
of the internal library controls are: the AButton control that displays a button and
provides notification when the button is pressed (OnClick event), the AChart control
used to display charts, and more.

• Procedures are used when writing code in procedures and tests. The internal library is
supplied with a large number of procedures. The procedures are divided into groups
that are called Library Modules. The internal library has modules used for
mathematical calculations, string manipulation, file I/O, GPIB, VXI, serial
communication, port I/O, DDE, and more.

• Variables provide the application a way to get, set, and perform actions on your
application components. These include TestResult and TestStatus that provide a way
to set the test result and test status; objects such as the Test object that provide a way to
the application to get and set the current test properties; and more.

• Types are data types defined by ATEasy and used by the internal library classes,
procedures, and variables. An example is the enumATestStatus providing the various
constants for the TestStatus variable.

The internal library can be browsed under the Libraries submodule. You can expand the
internal library components. You can retrieve help on any item that you see in the internal
library by pressing the F1 key.

82 Getting Started with ATEasy

Chapter 6 – Drivers and Interfaces 83

C H A P T E R 6 – D R I V E R S A N D I N T E R F A C E S

About Drivers and Interfaces
This chapter discusses how to create, add, configure, and use drivers in the system. You
will learn how to configure interfaces such as the GPIB board; how to add interfaces to the
driver; how to select the driver interface; and how to set the driver address in the system
using the driver shortcut. In this chapter, you will use I/O Tables to send and receive data to
a GPIB instrument using the HP34041 Digital Multimeter. You can apply similar
techniques when using a different instrument.

Use the table below to learn more about this chapter’s topics:

Topic Description
Interfaces and Interface Types What are interfaces and what types of interfaces

ATEasy supports.
Adding an Interface How to add an interface.
Creating and Adding Drivers How to add drivers to a system and how to create

new drivers.
Driver and Driver Shortcut Differences between the driver shortcut properties

and the driver’s properties.
Driver Default Name How to define the default name of a driver.
Defining the Driver Interface How to define a driver’s interface.
Configuring the Driver in the
System

How to configure the driver for an application.

I/O Tables What are I/O Tables?
Creating a SetFunctionVDC I/O
Table

How to create an I/O Table.

Creating a SetFunctionVAC I/O
Table

How to create a second type of I/O Table

Using the Output Discrete Mode How to take advantage of discrete properties to
reduce the number of I/O tables necessary in the
system.

Reading Data from the
Instrument

How to create an I/O table to read data from an
instrument.

Calling an I/O Table from a Test How to call I/O Tables from a program.
Using the Monitor View How to set up and turn on the Monitor View.
Using Function Panel Drivers How to use .fp drivers.

84 Getting Started with ATEasy

Topic Description
Using IVI Drivers How to use the ATEasy drivers for IVI based

instrument drivers

Interfaces, Interface Types, and Drivers
Interfaces are elements allowing ATEasy to communicate with external devices such as
instruments, computers, files, and more.

ATEasy supports two types of interfaces: internal (built-in) and external. Internal
interfaces are built into your machine and do not require any special software or
configuration. These interface types include:

• COM – for serial communication.

• FILE – for file I/O.

• WinSock – for TCP/IP communication (also low level LXI instruments).

• ISA – for PC based ISA bus based instruments.

• NONE – for drivers that do not use ATEasy interfaces.

In addition, ATEasy supports external interfaces requiring configuration and vendor
specific DLL libraries. The following external interface types are available:

• GPIB – General Purpose Interface Bus or IEEE-488, used to access an external GPIB
instrument connected to a GPIB interface board installed in your machine with a GPIB
bus cable. ATEasy supports many GPIB interface board vendors including Computer
Boards, Keithley (CEC), HP, and National Instruments.

• VXI – VME eXtension Interface. Allows ATEasy to communicate with VXI based
instruments using a National Instruments MXI-VXI board installed in your machine.

Chapter 6 – Drivers and Interfaces 85

ATEasy’s applications are not dependent on the
interface vendor. For example, replacing a National
Instrument’s GPIB board with HP’s GPIB board will
not result in changes in the application. In addition,
when using IO tables to communicate with the device,
drivers can be made interface type independent, so one
driver can be written to support more than one interface
type (for example, GPIB and VXI). Once the driver is
added to the system, a driver shortcut is created and
configured to contain the currently used interface and
the interface address.

Adding an Interface
Before ATEasy can access external interfaces on your computer, they have to be defined
and configured. These interfaces include GPIB and VXI. Other interfaces, such as COM
ports, are built-in and do not require any further action.

Before defining an interface, you must install the interface board in your computer and
install the vendor software driver. ATEasy uses the vendor driver in order to configure and
use the interface board.

In this example, we will be using the National Instruments GPIB board. If you have a
different type of board, the choices and displays may be slightly different.

 To define a National Instrument GPIB interface:

1. Select Options from the Tools menu.

2. Select the Interfaces page.

3. Select Gpib from the interface list and click Add. The Gpib Interface dialog appears.

4. Set the Address to be 1 (default). This address will be used by your application to
access the GPIB Board. Select the GPIB interface vendor. In our example, select
National Instruments from the combo box as shown here:

86 Getting Started with ATEasy

Note: If the Description text does not indicate the driver version as shown here, an error
message will display in the text box. If an error is displayed, make sure the vendor driver is
installed properly and resides in the ATEasy folder, Windows or Windows System folder,
or in the Windows PATH directories.

5. Click Settings. The National Instruments GPIB Boards dialog box appears as shown
below:

This is a vendor specific dialog box.

For National Instruments, set the board index as configured by the National Instrument
GPIB control panel applet: 0 for GPIB0, 1 for GPIB1, etc. If you have only one GPIB
board from National Instruments, this is set to 0 by default. The primary address is the
device GPIB address that ATEasy uses to access the board. Typically, it is set to 0,
unless you have a device already using that address.

Click OK to close this dialog.

Chapter 6 – Drivers and Interfaces 87

6. Click OK again to return to the Interfaces dialog box. Your screen should now look
like the following:

7. Click Close to return to the IDE main window. Your interface is now configured and
ready to use.

88 Getting Started with ATEasy

Creating and Adding Drivers
In this section, you will create a new driver. Typically, if you already have the driver for
your instrument, you will only need to add and configure it for your system before using it.
In this example, you will be developing a new driver for the HP34401 Digital Multimeter
GPIB instrument. For reference, you will add the HP34401 driver, which is supplied with
ATEasy, to your system.

 To add an existing driver to the System:

1. Select the Drivers submodule below the System module in the Workspace Window.

2. Select Driver Below from the Insert menu or from the Standard toolbar. ATEasy
displays a list of available drivers. By default, ATEasy drivers are installed in the
Drivers folder below the main ATEasy folder.

3. Select HP34401a.drv and click Open. ATEasy loads the driver and names a driver
shortcut as DMM. This driver is for a Hewlett-Packard GPIB based Digital
Multimeter (DMM). The document view for the driver opens in the client area.

 To create a new driver in the System:

1. Right-click on the Drivers submodule below the System module in the Workspace
Window and select New Driver from the context menu. ATEasy adds a new driver
and names the driver shortcut Driver1. The document view for the new driver opens in
the client area.

2. Click on the Save All command from the file menu and save the new driver
(Driver1) to MyDMM in the MyProject folder. Notice that ATEasy renamed the
shortcut from Driver1 to MyDMM.

At this point, you should have two drivers below the system Drivers submodule as
displayed here:

Chapter 6 – Drivers and Interfaces 89

Driver and Driver Shortcut
It is important to understand the difference between a driver shortcut, shown in the
workspace window, and the driver itself, shown in the document view. Visually, as you can
see, the driver shortcut has a little arrow , and the driver image does not have one.

The driver is based on the instrument or the device describing the device default name,
supported interfaces, and more. The driver shortcut is based on the configuration of the
device. It contains the name used to identify the driver in the application (and usually uses
the driver default name if not taken), the selected interface being used in the system, and
the address of the device.

Changes made to the driver will be saved in the driver file, while changes made to the
driver shortcut are saved in the System module.

Driver Default Name
The driver default name usually indicates the type of instrument this driver accesses. For a
digital Multimeter, use DMM. This name is used when you add the driver to a system as the
default identifier name. It is used to identify the driver in your system programmatically.

 To define the driver’s default name:

1. Select Driver in the MyDMM document view and select Properties from the View
menu or from the Standard toolbar. The properties window appears displaying the
Driver Properties:

2. Type DMM in the Default Name edit box.

90 Getting Started with ATEasy

Defining the Driver Interface
The driver interface to be created is a GPIB driver. You will be adding this interface to the
MyDMM driver you created.

 To define the driver’s interface:

1. Select the driver in the document view and either click the Properties command
from the Standard toolbar, or select Properties from the View menu. When the
properties window appears, click the Interfaces tab.

2. Check the Gpib Interface in the list box to add GPIB support to this driver. As shown
below, select the LF (Line Feed or "\n") for the Input and Output Terminator. Also,
select EOI to identify the end of transmission.

3. Uncheck the None interface, to make the GPIB interface the only interface supported
by this driver.

The driver Interfaces property page should like similar to the following dialog:

Chapter 6 – Drivers and Interfaces 91

Configuring the Driver in the System
A driver with a GPIB interface has been created. Now, configure the driver to be used in
your system.

 To configure the driver in the system:

1. Select the MyDMM driver shortcut in the Tree View of the Workspace window.
Open the properties dialog box by either clicking the Properties icon from the
Standard toolbar, or selecting Properties from the View menu. The driver shortcut
object properties dialog displays as below:

2. Select the Interface page.

3. Select Gpib from the combo box list for Interface.

4. Change the address to 1. This indicates that the driver is configured to use the board
address 1. Set the GPIB Primary address to 1 and the Secondary address to be None
(no secondary is used). Your screen should now look like the following:

At this point, your driver is configured and ready to send and receive data from the GPIB
interface board to GPIB address 1 where your instrument resides.

92 Getting Started with ATEasy

I/O Tables
To communicate with instruments using an Interface such as GPIB, you need to send data
while handling all the low-level requirements of the protocol. This is an intricate task as
some of these protocols (for example, GPIB and VXI) are complicated and require many
actions for every string of data sent over the bus.

ATEasy has a unique mechanism called I/O Tables to handle this task. An I/O Table is a
procedure containing operations instead of code to provide the implementation. Similar to
a procedure, an I/O table uses parameters to transfer data between the device and the
application.

I/O Table Operations include:

• Output – appends data to the output buffer. The buffer is used to accumulate data from
one or more output operations, which are later sent to the device using the Send
operation. Data can be specified or passed as a parameter to the I/O Table.

• Send – sends the content of the output buffer to the device.

• Receive – receives data from the device via the interface and places it in the input
buffer.

• Input – reads data from the input buffer and stores it via arguments passed to the I/O
Table.

• Delay – adds a delay between operations.

• Trig – triggers a device (applicable to GPIB and VXI only).

An I/O Table is one of the methods used to communicate with an instrument. ATEasy also
provides procedures with lower level and protocol-specific ways to control instruments.
These procedures reside in the ATEasy internal library.

Using an I/O table provides the driver a way to become interface independent and let the
driver support more that one interface (for example, GPIB and RS-232) without the need to
write interface-specific code inside the driver.

Chapter 6 – Drivers and Interfaces 93

Creating a SetFunctionVDC I/O Table
I/O Tables perform a variety of functions. The first you will work with is writing data to an
instrument. The I/O table you create here will be used to set the DMM to VDC (Volts DC)
measurement mode. To do so, you need to send a string to the DMM instructing it to
change its measurement mode to VDC. For that, you need one output operation and one
send operation.

 To create an IO Table:

1. Select the IOTables submodule from the tree view in the Document View of the
MyDMM driver.

2. Select IoTable Below from the Insert menu or from the Standard toolbar. A new
I/O table called IOTable1 is created.

3. Rename the I/O Table by typing SetFunctionVDC.

4. Type the following description for this operation in the description view: Sets the
measurement function to VDC.

Your screen should now look similar to the following:

The I/O Table object view displayed at the right side contains a combo box showing a list
of the module I/O Tables (the current I/O Table is shown when the list is collapsed). The
area below it is used to for the current I/O Table description, and the lower area contains a
list showing the current I/O Table operations.

94 Getting Started with ATEasy

 To create the Output operation:

1. With the I/O Table SetFunctionVDC selected, right-click on the operations view and
select Insert IoOperation After from the context menu. An Output operation is
created.

2. Right-click on the Output operation and select Properties . You need to enter a
string into the Argument field to designate the VDC mode. Enter the following string
required by the DMM for VDC mode:

FUNC “VOLT:DC”

The HP 34401 user’s guide specifies that this is the string to be sent in order to set up
the instrument for VDC measurement mode. No other changes are required as the
default mode of the Output operation is Const String (Constant String). Your
properties window should look similar to the following:

Chapter 6 – Drivers and Interfaces 95

The Output operation you just inserted appends the string to the output buffer. However,
you need to transmit the buffer content to the DMM. To send the data over the GPIB bus,
you need to add a Send Operation.

 To create the Send operation:

1. Right-click on the Output operation in the operations view and select Insert
IoOperation After from the context menu. A new Output operation is created.

2. Right-click on the new Output operation and select Properties . In the properties
dialog box, select Send from the Operation combo box. No other changes are required.
Your screen should now look similar to the following:

The operations view now shows two operations: Output, followed by the Send operation.
Your I/O table is now completed and is ready to use.

96 Getting Started with ATEasy

Creating a SetFunctionVAC I/O Table
In this section, you will create a similar I/O Table called SetFunctionVAC. The
SetFunctionVAC changes the DMM measurement mode to measure in Volts AC. Instead of
repeating the steps to create the previous I/O Table, you will use the clipboard commands
to duplicate the SetFunctionVDC I/O Table. Then, you will modify the I/O Table and the
Output operation to the VAC functionality.

 To create the SetFunctionVAC I/O Table:

1. Right-click on SetFunctionVDC and select the Copy command from the context
menu.

2. Right-click again on the SetFunctionVDC and select the Paste command from the
context menu. A dialog box displays as shown here:

3. Click on the Duplicate button. A new I/O Table is created and named
SetFunctionVDC1.

4. Select the SetFunctionVDC1 I/O Table and rename it to SetFunctionVAC. (Use the
F2 key if you need to.)

5. Type the following description for this table in the description view: Sets the
measurement function to VAC. (Hint: you can just edit VDC to VAC.)

6. Select the Output operation, open the properties window and change the argument to
display:

CONF “VOLT:AC”

Chapter 6 – Drivers and Interfaces 97

When done, the I/O Tables view should be as shown below:

If desired, you could now create additional I/O Tables for all the DMM’s measurement
modes such as current (IAC and IDC), resistance (2-wire and 4-wire), frequency, etc.

Using the Output Discrete Mode
While you could continue to add individual I/O tables for each of the DMM functions,
ATEasy offers another method to further simplify driver development. One of the property
pages for an Output operation is Discrete. The Discrete mode allows a single I/O Table to
accommodate multiple options, which typically require multiple I/O Tables. In this
example, you will create a single I/O Table allowing you to set the measurement mode of
the DMM to any of the available functions.

 To create a new I/O Table using the Discrete mode:

1. Create a new I/O Table, naming it SetFunction. Set the I/O Table description to Sets
the measurement function. For specific steps to create an I/O table, see Creating a
SetFunctionVDC I/O Table on page 93.

2. Create one Output operation and set the argument to FUNC “. No other changes to this
operation are required.

3. Add another Output operation and open the properties window for it.

4. Select Parameter to Discrete String from the Mode combo box.

98 Getting Started with ATEasy

5. Set the Argument name to iFunction. Enter the description: 1 VDC, 2 VAC, 3 2Wire,
4 4Wire, 5 Freq, 6 Period

Your screen should now look similar to the following:

6. Select the Discrete page of the Output properties. This page contains a cross-reference
table for multiple I/O Table discrete values. You can enter a different string for each
value and when the I/O table is called with a specific value, the corresponding string
will be sent to the instrument.

7. Enter 1 in the Value field. Type VOLT:DC” in the String field. Click Add.

8. Repeat steps 7 and 8 for each of the following:

Value String Used for
2
3
4
5
6

VOLT:AC”
RES”
FRES”
FREQ”
PER”

VAC measurements
2Wire measurements
4Wire measurements
Frequency measurements
Period measurements

The discrete output properties page should now look similar to the following:

9. Add another Send operation.

Chapter 6 – Drivers and Interfaces 99

Your document view should now look similar to the following:

You have created a single I/O table to handle all the DMM measurement functions. When
this I/O Table is called with a parameter of 1, the DMM will be set to VDC; when 2 is the
argument, the DMM will be set to VAC; and so forth.

100 Getting Started with ATEasy

Reading Data from the Instrument
The I/O Tables you have created to this point all send data to an instrument. The next step
is reading data from an instrument, which typically involves sending out an instruction to
the instrument to first provide the data and then read the data.

 To measure and read data:

1. Create a new I/O Table and name it Measure.

2. Create an Output Operation and enter READ? as the argument.

3. Create a Send Operation. These two operations direct the DMM to send data back over
the bus. You need to read this data into ATEasy.

4. Create a third operation. Change its type to Receive from the operation properties
window as shown here:

5. Create another operation and change the operation type to Input. Leave the Mode as
ASCII to Parameter, which causes ATEasy to convert ASCII data in the buffer to the
parameter type you select. Enter dResult in the Argument. The parameter type should
be set to Double by default. Enter the description of the parameter as: Returned
measurement. The Input properties window should look similar to the following:

Chapter 6 – Drivers and Interfaces 101

This I/O Table is now complete. When called, ATEasy first sends a string (:READ?) to the
DMM and then reads back data and converts the data from ASCII to the parameter dResult
of type double.

As a quick check, the driver’s tree view in the document view should now have the four I/O
Tables and look as illustrated below:

In the next section, you will call the I/O table from a new test that you will create in
MyProgram. By default, ATEasy does not export I/O Tables to other modules. Normally
I/O tables are used only within the driver by Commands. You can override this behavior by
making the I/O Table public, so you can use it from other modules.

 To make I/O Tables public:

1. Right-click on the SetFunctionVDC, and select Properties from the context menu.

2. Check the Public checkbox. This will make the I/O table visible to other modules.

3. Repeat step 2 for the rest of the I/O tables.

102 Getting Started with ATEasy

Calling an I/O Table from a Test
An I/O Table is a type of ATEasy procedure. As such, they can be called directly from tests
or procedures (if declared public). I/O Tables may also be called using Driver Commands
as explained in the Commands chapter. There, you will be calling the I/O Tables you
created in this chapter via driver commands. The examples below are provided for your
information.

When using a procedure or any symbol that is defined in another module or test, you can
either make an explicit call specifying the module the symbol belongs to, or make an
implicit call in which the module is not specified. In such cases, ATEasy will search the
system and all configured drivers for the specified symbol.

The following example is for an implicit I/O Table call for the first I/O Table you have
created.

SetFunctionVDC()

The next example is for an explicit call to the same I/O Table.

MyDMM.SetFunctionVDC()

The third example demonstrates an implicit call to an I/O Table with an argument
(parameter). As you recall, this I/O Table uses the Parameter to Discrete String argument
and “1” represents the VDC function.

SetFunction(1)

The fourth example demonstrates an explicit call to the Measure I/O Table with an
argument TestResult.

MyDMM.Measure(TestResult)

Chapter 6 – Drivers and Interfaces 103

Using the Monitor View
Use the Monitor window to view the actual communication between ATEasy and the
devices it controls. ATEasy displays data sent and received using GPIB, RS-232, VXI,
WinSock, File IO, and more.

 To use the Monitor window:

1. Select Monitor from the View menu. A dockable window appears. By default, the
Monitor is turned off.

2. Right-click in the Monitor window, and select Start Logging. This starts the monitor.

3. To see how the monitor displays information, open the Debug Window from the View
menu and type MyDmm.SetFunction(2) followed by a line with
MyDMM.Measure(TestResult).

4. Select the two lines and select Doit! from the Debug menu. The monitor should
display the following:

104 Getting Started with ATEasy

Using VXI Plug&Play Function Panel Drivers
ATEasy allow you to use VXI Plug&Play drivers created by instrument vendors. These
instrument drivers support various interface types such as GPIB, VXI, Serial or PC based
board and more. The function panel driver has a .fp file extension and can be imported to
ATEasy using the File Open command similar to the way you do when you insert an
ATEasy driver. Once the driver is loaded to ATEasy you will need to save it to ATEasy
driver (.drv or .drt file).

VISA
Prior to using function panel drivers you will need to install the VISA library. Currently
two vendors provide the VISA library: Agilent Technologies (http://www.agilent.com) and
National Instrument (http://www.ni.com). The VISA library can be download from their
web site. We recommend to use the VISA library from the same vendor that manufacturer
the GPIB/VXI board you're using. If no GPIB or VXI board is used then any of these
libraries will do. The VISA Library Specification (VPP-4.3) is authored by the
VXIplug&play Systems Alliance member companies. You can obtain the specification of
the VISA library from the alliance’s web site at http://www.vxipnp.org. The VISA
specification provides a common standard for the VXIplug&play System Alliance for
developing multi-vendor software programs, including instrument drivers. This
specification describes the VISA software model and the VISA Application Programming
Interface (API). VISA gives VXI and GPIB software developers, particularly instrument
driver developers, the functionality needed by instrument drivers in an interface-
independent fashion for MXI, embedded VXI, GPIB-VXI, GPIB, and asynchronous serial
controllers. VXIplug&play drivers written to the VISA specifications can execute on
VXIplug&play system frameworks that have the VISA I/O library.

Function Panel Driver Files
You can obtain and download a Function Panel driver (sometimes refer to as IVI-C driver)
from the instrument manufacturer web site. Most vendors also register their driver at the
IVI Foundation web site http://www.ivifoundation.org under the Driver Registry section.
Some vendors such as Agilent or National Instruments carry also third party instruments
drivers. After installing the Function Panel driver it's Function Panel file along with other
files (such as help file, source files and read me files) will be located in a new sub-folder
below the VXIPNP folder that hold the instrument name (e.g. Agilent/HP 34401A).
Additional driver file will be located in the BIN folder (the driver DLL), LIB and Include
(.h C language header file) directories. You may use the driver help file to view the
function reference. The DLL file will be used by the ATEasy driver and must shipped along
with your application along with the VISA library.

http://www.agilent.com/�
http://www.ni.com/�
http://www.vxipnp.org/�
http://www.ivifoundation.org/�

Chapter 6 – Drivers and Interfaces 105

The following table provides an example to the files copied after loading the HP34401A
digital multimeter driver from National Instruments web site on a Windows 2000 machine:

Folder File Description
VXIPNP\WINNT\
BIN

hp34401a_32.dll Describes attributes used by the driver
function parameters. This file is provided
with in newer function panel drivers that
are IVI compatible. Used by ATEasy only
when converting the function panel to
ATEasy driver.

VXIPNP\WINNT\
hp34401a

hp34401a.fp Describes attributes used by the driver
function parameters. This file is provided
with in newer function panel drivers that
are IVI compatible. Used by ATEasy only
when converting the function panel to
ATEasy driver.

 hp34401a.sub Describes attributes used by the driver
function parameters. This file is provided
with in newer function panel drivers that
are IVI compatible. Used by ATEasy only
when converting the function panel to
ATEasy driver.

 hp34401a.hlp Windows help file. Contains reference
information about the DLL functions.

 hp34401a.c Source file for the DLL functions. Not
used by ATEasy.

 hp34401a.txt Read me text file. Contains information
about the driver and its files. Not used by
ATEasy.

 hp34401a
_example.c

C example. Shows how to program the
board.

VXIPNP\WINNT\
Include

hp34401a.h C header file. Includes the DLL functions
prototypes. Used by ATEasy only during
the convert process.

VXIPNP\WINNT\
Lib\ bc

hp34401a.lib Borland C++ library. Not used by
ATEasy.

VXIPNP\WINNT\
Lib\ msc

hp34401a.lib Microsoft VC++ library. Not used by
ATEasy.

106 Getting Started with ATEasy

 Converting Function Panel Driver to an ATEasy Driver

1. Select Open from the File menu

2. Select Driver files from the File Open dialog File of type drop down list and select the
FP file from the VXIPNP driver folder.

3. Click Open.

ATEasy will start converting the FP file to ATEasy driver. During the conversion ATEasy
may need to open other file used by the .FP file, these files may be the C header file .H and
the .SUB file (if exist). Other files that may be required are additional header files that are
included in C header file, these file are typically installed by the VISA library (e.g. IVI.h or
VISA.h) or by your C compiler (if you have one). If ATEasy is unable to find these files it
will prompt you to select the path in which these files reside, if you are unable to find these
files select Cancel, in that case ATEasy will try to continue with the convert. After the
conversion is complete you may need to save the ATEasy driver file (drv or drt format).

Before using the driver you will need to configure its parameters as follows:

 Configuring the Converted Function Panel ATEasy Driver

1. Open the Driver Shortcut properties window.

2. Click to show the Parameters property page.

3. Select the ResourceName string parameter and type in the address of the instrument
that you are trying to use. This address is typically looks as "GPIB0::14::INSTR" if the
address is GPIB Board #0, primary address 14. The next paragraph explains in details
how to address a instrument.

4. Select the IdQuery numeric parameter and type 0 if you do not want to perform In-
System Verification in the address of the instrument that you are trying to use. Type 1
to verify that the instrument exist when Initialize is called.

5. Select the ResetOnInit numeric parameter and set it value to 1 if you want to reset the
instrument when the driver OnInit is called else set its value to 0.

6. Select the InitializeOnInit numeric parameter and set it value to 1 if you want to
initialize the driver when the driver OnInit is called else set its value to 0.

Chapter 6 – Drivers and Interfaces 107

Specifying the ResourceName Parameter
The ResourceName string has the following grammar:

Interface Grammar Example
VXI VXI[board]::VXI logical

address[::INSTR]
"VXI0::1::INSTR" - a VXI device at
logical address 1 in VXI interface
VXI0.

VXI VXI[board]::MEMACC "VXI::MEMACC" - board-level
register access to the VXI interface.

VXI VXI[board][::VXI logical
address]::BACKPLANE

"VXI::1::BACKPLANE" - mainframe
resource for chassis 1 on the default
VXI system, which is interface 0.

VXI VXI[board]::SERVANT "VXI0::SERVANT" - servant/device-
side resource for VXI interface 0.

GPIB-VXI GPIB-VXI[board]::VXI
logical address[::INSTR]

"GPIB-VXI::9::INSTR" - a VXI
device at logical address 9 in a GPIB-
VXI controlled VXI system.

GPIB-VXI GPIB-
VXI[board]::MEMACC

"GPIB-VXI1::MEMACC" - board-
level register access to GPIB-VXI
interface number 1.

GPIB-VXI GPIB-VXI[board][::VXI
logical
address]::BACKPLANE

"GPIB-VXI2::BACKPLANE" -
mainframe resource for default chassis
on GPIB-VXI interface 2.

GPIB GPIB[board]::primary
address[::secondary
address][::INSTR]

"GPIB::1::0::INSTR" - a GPIB device
at primary address 1 and secondary
address 0 in GPIB interface 0.

GPIB GPIB[board]::INTFC "GPIB2::INTFC" - Interface or raw
resource for GPIB interface 2.

GPIB GPIB[board]::SERVANT "GPIB1::SERVANT" -
Servant/device-side resource for GPIB
interface 1.

ASRL ASRL[board][::INSTR] "ASRL1::INSTR" - a serial device
located on port 1.

TCPIP TCPIP[board][::LAN device
name]::SERVANT

"TCPIP::inst0::SERVANT"-
Servant/device-side resource for
TCPIP device.

108 Getting Started with ATEasy

Interface Grammar Example
TCPIP TCPIP[board]::host

address[::LAN device
name]::INSTR

"TCPIP::dmm2301@ki.com::INSTR"
-a TCP/IP device dmm2301located at
the specified address.

TCPIP TCPIP[board]::host
address::port::SOCKET

"TCPIP0::1.2.3.4::999::SOCKET" -
raw TCP/IP access to port 999 at the
specified address.

Comments:

• The VXI keyword is used for VXI instruments via either embedded or MXIbus
controllers.

• The GPIB-VXI keyword is used for a GPIB-VXI controller.

• The GPIB keyword can be used to establish communication with a GPIB device.

• The ASRL keyword is used to establish communication with an asynchronous serial
(such as RS-232) device.

• The TCPIP keyword is used to establish communication with Ethernet instruments.

• Default value for board is 0.

• Default value for secondary address is none.

• Default value for LAN device name is inst0.

Using the Converted Function Panel ATEasy Driver
Once the driver is inserted to the system and configured you can start using its commands.
ATEasy generates a command for each of the functions that are exported by the FP file.
Each command is attached to an ATEasy procedure, which contains a call the driver DLL
procedure. The ATEasy procedure generated also contains checking of the return value
from the DLL procedure, if an error occurs ATEasy will generate an exception using the
error statement. This allows you to concentrate on using the driver commands and
implement error handling in one place (e.g. in OnError) without adding code for error
checking after each commands used.

The driver command tree typically contains the following commands:

• Initialize - Establishes communication with the instrument. Must be called prior to
any other command to obtain the instrument session handle. The driver uses this
handle when accessing all other commands by the driver.

Chapter 6 – Drivers and Interfaces 109

• [Configuration] - Optional. Contains commands to configure the instrument.

o Attributes - In IVI based driver Contains attributes to set or get the
instrument configuration.

• [Measurement] - Optional. Contains commands to return a measurement from the
instrument.

• Utility

o Error Message - Translates the error return value from a VXIplug&play
instrument driver function to a user-readable string.

o Error Query - Queries the instrument and returns instrument-specific error
information.

o Reset - Places the instrument in a default state.

o Self Test - Causes the instrument to perform a self-test and returns the
result of that self-test.

o Revision Query - Returns the revision of the instrument driver and the
firmware revision of the instrument being used.

o ...

• Close - Terminates the software connection to the instrument and de-allocates
system resources associated with that instrument.

Additional commands may be available to provide control of the instrument configuration
and measurements functions as provided by the driver manufacturer. These commands are
documented in the driver help file.

Using IVI drivers
The IVI standard for instrument drivers was created by the IVI Foundation
http://www.ivifoundation.org. The foundation defined generic, interchangeable
programming interfaces for common instrument classes. Currently the following IVI
drivers were released by the IVI foundation: DC power supply, Digital multimeter,
Function generator & Arb, Oscilloscope, Power meter, RF signal generator, Spectrum
analyzer and Switch. IVI drivers are based on VXI Plug&Play drivers and they require
VISA and the IVI libraries that are provided by the IVI foundation members to be installed
prior using them. The drivers offer same functions and parameters to different instruments
of the same type (i.e. DMM) from different vendors. For example, it allows you to replace
Agilent 34401 with a Keithley 2000 DMM in your system without changing your code.
ATEasy provides built in support for theses drivers and provides ATEasy drivers for all the
above IVI drivers.

http://www.ivifoundation.org/�

110 Getting Started with ATEasy

 To Insert an ATEasy IVI driver to your system

1. Before using the driver you must install the instrument manufacturer IVI driver. The
IVI engine uses this driver to control the instrument.

2. Configure the driver address and its logical name using the IVI configuration utility
such as National Instruments Measurement & Automation Explorer. The Logical Name
which is used to identify the instrument and entered by you (in that utility, the logical
name must be displayed below IVI Drivers/Logical Names and the manufacturer IVI
instrument driver should be link to that logical name and appears under IVI
Drivers/Driver Sessions which also contain the instrument address, if you don’t see
IVI Drivers in that utility IVI engine is not properly installed). The instrument address
is a VISA resource name (see earlier in this chapter).

3. Select Insert IVI Driver… command from the Insert menu. The IVI Driver Wizard is
displayed as shown here:

4. Select the IVI class from the list.

5. Type in the driver shortcut name.

6. Type in the instrument Logical Name as explained above.

Programming using ATEasy IVI drivers is similar to Function Panel imported drivers.
ATEasy provides several examples for the various IVI classes; the IVI workspace file
Ivi.wsp contains these examples.

C H A P T E R 7 – C O M M A N D S

About Commands
This chapter discusses user-defined statements that extend the ATEasy programming
language. These are called Commands. Use the table below to learn more about this
chapter’s topics.

Topic Description
Overview of Commands What are ATEasy commands, the syntax of commands,

and the benefit of using Commands?
Commands and Modules Discusses the modules that can have commands and

provide examples of commands.
The Commands View Describes the Commands view used to create commands.
Creating Driver
Commands

Provides a detailed, step-by-step example of creating
driver commands.

Attaching Procedures
and I/O Tables to
Commands

How to attach the procedures and I/O Tables you
previously created to commands.

Replacing Parameters
with Arguments

How to replace parameters with constants and variables
arguments with parameters for commands that are
attached to procedures with parameters.

Using Commands from
Other Modules

How to use commands created in other modules.
Provides rules and recommendations for using
commands from other modules.

Creating System
Commands

Provides an example explained in a step-by-step
procedure to create a system procedure and command.
Also, demonstrates how to use auto command
completion and insert command cascading menu to insert
command to your code.

Program Commands Provides examples of program commands.

112 Getting Started with ATEasy

Overview of Commands
One of the notable ATEasy features is the ability to define and extend the programming
language by adding user-defined statements that look like English statements. Command
statements have the following syntax:

Syntax: Module Name Command Items... [(Arguments)]

Examples: DMM Set Function VDC

 DMM Measure (dResult)
The module name comes first in the command. This is either the current module (Program,
System or Driver) or the specific name of a driver (DMM). Next in the command is a set of
words that makes up the command item. When you create a command item, you may attach
a procedure to it. At run-time, the procedure or I/O table is called when the command
statement is executed. The last portion of the command is called an argument. The
argument is taken from the list of procedure that may be attached to the command.

ATEasy lets you substitute a supplied parameter when writing the commands or,
alternatively, you can supply them when you use the command statement in your code.

Commands replace procedures. There are many reasons to use commands instead of
procedures:

• Commands are self-documented. They look like plain English and they reduce the need
for documentation. They replace cryptic procedure names with English-like statements.

• Commands make your test program looks like a TRD (Test Requirement Document).

• The command items structure makes it easy to locate, browse, and categorize them. A
typical instrument driver may contain hundreds of commands. By grouping command
items into categories such as Setup, Measure, etc., you can locate them more quickly
when you need to use them.

• Commands can be used to hide arguments passed to the procedure, thereby simplifying
coding.

• Commands encourage you to create a standard programming interface for an
instrument. This can later be used for similar instrument types (for example, DMM),
making your test programs instrument-independent. For example, you can create a
template containing commands for a DMM, which can be reused for each DMM you
use.

Chapter 7 – Commands 113

• Once defined, commands appear in cascading menus under Insert on the ATEasy
Menu bar. Choosing commands via menus eliminates typing and syntax errors. In
addition, automatic command completion provides another way for the user to use
commands.

Commands and Modules
ATEasy commands can be defined in each of the module types:

• Driver commands provide a layer between the programs and the instruments
instructions (for example, I/O Tables, DLL procedures). Although you can call I/O
Tables and DLL procedures directly from programs, it is more convenient and more
organized to do it using driver commands. Driver commands can start with the driver
shortcut name (for example, DMM) or with the Driver keyword. Using Driver in a
command statement can be done only within the driver procedures. Used this way, it
refers to the current driver. When using a command in a driver procedure that was
defined within the driver, you should use the Driver name instead of the driver shortcut
name. This is recommended because the driver shortcut name can be changed from
system to system (or you may have two DMMs in your system: DMM1, DMM1).

• System commands provide a layer between several instrument drivers and the
program. A single command can be linked to a procedure using several instruments to
perform a single task. Typically, system commands are used when a specific function
or task needs to be accessible by all the programs in a given project. System commands
always start with the System module name.

• Program commands improve programming by creating language elements specific to
a UUT for repeated actions unique to a specific test program. While System and Driver
commands are accessible by all modules in a given project, the program statements can
only be used within that program. Program commands always start with the Program
module name.

114 Getting Started with ATEasy

Here are some examples of commands:

Command Description

DMM Set Function VDC Sets the DMM to Volts DC measurement
mode

DMM Set Range 300V Sets the DMM’s range to 300 Volt

DMM Measure (dResult) Reads a measurement from the DMM’s
buffer

RELAY Close (1) Closes relay #1 on a relay card

FUNC Set Frequency (15000) Sets the frequency of a function generator to
15KHz

System Measure J1_23 VDC
(dResult)

System command: Switches to route signals
to J1_23, sets DMM to VDC, and takes a
measurement.

Program Start Engine Left Program command: Closes a relay for a
specific time to start an engine.

Chapter 7 – Commands 115

The Commands View
The Commands view is used to create and edit commands. An example of this view is
shown below:

The left pane of the Commands View shows the module’s tree (in this case, the Driver Tree
View). The top right pane of the Commands View shows the Commands Tree View listing
all the available command items. The highlighted command item in this view is the
Current or Selected Command Item (Function here). Below the commands tree is a
textbox for the selected command item description. Below this textbox, there is a drop
down list on the left listing the available procedures types (for example, I/O Tables, DLL
procedures). To the right of the list box, the Attach/Remove procedure button allows you to
attach or remove procedures to/from the current command item.

In the pane below the procedure types is the Procedures List of the available procedures
for the selected procedure type. The default procedure type for all ATEasy modules (i.e.
driver, system and program) is Procedures (local procedures).

The bottom pane displays the currently selected procedure. This is the Parameter
Replacement Edit Box where you may substitute values for parameters in a procedure, so
the user will not need to enter them when using the command.

Driver Tree View

Commands Tree View

Parameter Replacement Edit Box

Selected Command Description

Procedures
Types

Procedures List

Current Command Item

116 Getting Started with ATEasy

The Commands View is almost identical for Drivers, System, or Programs. The only
difference is the type of procedures available to each. All have local procedures, the
ATEasy Internal Library procedures, as well as any other library linked to that module. The
Driver’s Commands View also adds I/O Tables to the list of available procedure types as
only ATEasy drivers have I/O Tables.

Creating Driver Commands
In Chapter 6, you created several I/O Tables for the DMM driver. Now create Driver
Commands for these I/O Tables.

 To create driver command items:

1. Double-click on the Commands submodule under MyDMM in the Workspace
window. The commands view is displayed.

2. Right-click on Driver and select Insert Command Below from the context menu. A
new command item is inserted called Untitled1. Type Set in the edit box to rename the
command item.

3. Repeat step 2 and insert a new item below Set. Rename it Function.

4. Repeat step 2 and insert six items below Function. Rename them VDC, VAC, 2Wire,
4Wire, Frequency, and Period.

5. Create an additional item below Driver. Rename it Measure.

At this point, the commands view should look as shown here:

Chapter 7 – Commands 117

Attaching Procedures and I/O Tables to Commands
A command item becomes a command only after you attach a procedure or an I/O Table.
Since the driver MyDMM uses I/O Tables, attach them to its command items.

 To attach I/O Tables to Command items:

1. Select the Function command item in the command items view.

2. Select IO Tables from the Procedures combo-box. The available I/O tables are
displayed in the list below.

3. Select SetFunction from the procedures list.

4. Click Attach Procedure. The Procedure is now displayed next to the command item in
the command items view.

5. Repeat steps three and four for the VDC, VAC and Measure command items.

The commands view should look as shown here:

Four commands were created:

Set Function (iFunction)

Set Function VDC

Set Function VAC

Measure (dResult)

118 Getting Started with ATEasy

Replacing Parameters with Arguments
When attaching procedures with parameters to command items, you can replace the
parameter with an argument. The argument you specify will be used instead of the
parameter and the command will not require the user to supply an argument. Parameters are
usually replaced with literals that you supply, but can also be replaced with variables that
you define.

In the following example you will use the SetFunction I/O Table to implement the
remaining commands under Set Function: 2Wire, 4Wire, Frequency, and Period.

 To implement the remaining command:

1. Attach SetFunction to the 2Wire command item.

2. Select the iFunction text in the Parameter Replacement edit box (at the bottom of the
commands view) and type 3 to replace the text. The command items view is
automatically updated to display SetFunction (3).

3. Repeat steps one and two for 4Wire, Frequency, and Period and use 4, 5, and 6
respectively.

The commands view should look as follows:

Four commands were created:

Set Function 2Wire

Set Function 4Wire

Set Function Frequency

Set Function Period

Chapter 7 – Commands 119

Using Commands from Other Modules
By default, command items are created as Public. This makes command items available for
use by other modules as well as for use within the same module. Turning off the public flag
prevents the user from using them in other modules. The Public property can be set from
the command item Properties window.

Commands are available between modules as follows:

• Program commands can access all of the commands defined within the program as well
as the public commands of both the system and drivers.

• System commands can access all of the commands defined within the system itself as
well as the public commands of the drivers.

• Driver commands can access commands defined within the driver as well as public
commands defined by the system and other drivers. It is recommended to not use other
driver or system commands from a driver, since it makes that driver dependent on the
current system and on the driver shortcut names. This can make the driver work only on
one system and can reduce the re-usability of the driver.

Creating System Commands
Before you can employ System commands, you need to create a System Procedure. In this
example, you will create a procedure named MeasureMyDmmVdc(dResult). The
procedure will call two commands defined in the MyDMM driver.

Typically, your system will have procedures that route signals from the UUT to the
measurement instrument. The signal will be routed using a switching instrument you may
have in your system. Then the procedure will call functions to both set up the measurement
and to take a measurement. Since your system contains only measurement instruments,
only use the DMM to implement the procedure.

 To create a System procedure:

1. Open the System document view by double-clicking on the system shortcut from the
Workspace window.

2. Right-click on Procedures in the tree view of the system document view and select
Insert Procedure Below . A new procedure is created.

3. Open the Properties window and rename the procedure to MeasureMyDmmVdc.

4. Right-click on the procedure variables view and select Insert Parameter/Variable At
. A new variable is inserted. Rename it to dResult.

120 Getting Started with ATEasy

5. Right-click on dResult. Select Properties and change the variable type to Double.

6. Select the Var parameter type from the Parameter combo box.

7. Type MyDMM followed by a space in the procedure code view. The command auto
completion will display the commands available from the MyDMM driver as follows:

8. Press the down arrow key to select Set. Press ENTER and continue to select Function
and VDC.

9. On the next line, use the cascading menu to insert the next command. Right-click on
the beginning of the next line. Select Driver Command. Select MyDMM, and then
select Measure(dResult) as shown here:

The command is inserted into the code view.

You have now finished writing the system procedure. Your next step is to create a
command using the system procedure.

Chapter 7 – Commands 121

 To create the System command:

1. Select Commands from the tree view in the system document view. The commands
view displays in the right pane.

2. Right-click on System and select Insert Command Below from the context menu.
A new command item is created.

3. Rename the command item to Measure.

4. Right-click on Measure and select Insert Command Below from the context
menu.

5. Rename the new command item to MyDMM.

6. Insert another command item below MyDMM and rename it to VDC.

7. Select MeasureMyDmmVdc from the procedures list and click on the Attach
Procedure button. The view should look as follows:

At this point, the system command is ready. You can insert it into a code view within a
procedure or a test using the techniques learned here by:

• Using the auto command completion.

• Using the Insert System Command from the Insert menu or from the context menu.

• Directly typing the command into the code view.

You can use the same techniques learned here to create program commands, which can be
used in the program module.

122 Getting Started with ATEasy

Program Commands
In the following examples, Program Commands are used to set, apply and remove UUT
power. Since the UUT power combination in this example applies only to the UUT tested
by this program, program commands were used rather than System commands. Please note
that this section is for reference only. You will not be creating any program commands in
your example project.

Program Command Performs the Following
Apply UUT Power PS1 Set Voltage (28)

PS1 Set Current Limit (1.5)

PS1 Set Output ON

PS2 Set Voltage (5)

PS2 Set Current Limit (3.25)

PS2 Set Output ON

RELAY Close (5)

RELAY Close (6)

Remove UUT Power PS1 Set Output OFF

RELAY Open (5)

PS1 Set Voltage (0)

PS1 Set Current Limit (0)

PS2 Set Output OFF

RELAY Open (6)

PS2 Set Voltage (0)

PS2 Set Current Limit (0)

In the first example, PS1 and PS2 are programmable power supplies being set to the correct
voltage and current limit for a specific UUT. The power supplies’ outputs are then turned
ON and the outputs are applied to the UUT using a RELAY card.

The second example is a reverse of the first one where the power supplies are removed
from the UUT and then reset to 0. Since you probably need to apply and remove power
to/from the UUT several times during the program, these Program commands simplify
programming and reduce debug and integration time.

C H A P T E R 8 – W O R K I N G W I T H F O R M S

About Working with Forms
This chapter discusses Forms and Controls; how to create and use them. You will also learn
about ATEasy Form Events, variables, and procedures. You will create a form to display a
waveform in a chart control. This form does not depend on any of the modules you have
already created. Use the table below to learn more about this chapter’s topics.

Topic Description
Overview of Forms What the ATEasy forms are used for and what types of

Forms are available?
The Form Development
Process

Which steps are required for form development?

Creating a Form Explains how to create a form and about the form view
used to design and write code for forms.

Setting the Form
Properties

Explains the various form properties and property pages.

Form Controls Explains form controls and menus. Shows the Controls
toolbar and provide an overview of the ATEasy built-in
controls.

Adding Controls Shows how to add controls and to align them on the form.
Setting Control
Properties

Explains control properties and how to set them from their
property pages.

Setting Controls Tab
Order

Explains what the Tab Order is and how to set it.

Testing the Form
Layout

Explains how to use the Test Form command.

Using Events Explain what are events and how ATEasy calls them.
Writing an Event for
the Close Button

Implements the OnClick event for the Close button.

Adding Variables Adds variables to a form.
Writing an Event for
the Acquire Button

Implements the OnClick event for the Acquire button.

Writing Procedures Writes the AcquireData procedure to fill the arrays for
the chart.

124 Getting Started with ATEasy

Topic Description
The Load Statement Explains about the Load statement used to create the form

object.
Using the Form Shows how to create a test used the load the form.
Testing the Form Explains how to use the Formit! command to test the

form.

Chapter 8 – Working with Forms 125

Overview of Forms
Forms are one of the building blocks of ATEasy applications. Forms are windows or
dialogs used to display data to the user in various formats and to provide interaction
between the user who is using the application and the application itself.

Forms can include menus or controls. ATEasy provides an extensive library of ActiveX
controls, as well as accepting any third-party control library of ActiveX controls.

ATEasy forms are commonly used to:

• Manage a test environment (a test executive)

• Display values and control a test instrument (a virtual instrument panel)

• Handle messages to the user such as text or virtual indicators (lights, analog and digital
displays, progress bars, etc.)

• Display data such as test results in various formats (numerical, charts, graphs, etc.)

Forms are ATEasy submodules that can be placed into any one of ATEasy’s modules:
Driver, System, and Program. Forms are placed in the modules according to the function
they serve:

Module Form Function
Driver Virtual panel – provides a way to control the instrument

interactively
System Control of an entire test system with many test programs and drivers

(for example, a Test Executive)
Program Display of information regarding a specific UUT (for example,

instructions to connect test leads or flip switches)

126 Getting Started with ATEasy

The Form Development Process
The form development process contains multiple steps because forms themselves contain
many elements. While the steps described here do not necessarily have to be followed in
the order shown, these steps must be completed for the Form to be fully functional.

 To develop a form, the following steps should be performed:

Step Description
Create a form Adding a new form to the Forms submodule.
Add and arrange
controls and menus

Adding the required controls and menus to the form and
arrange their layout on the form.

Set the form, controls
and menus properties

Setting the default properties for these objects. These
properties may be modified during run-time by
statements from your code as a response to an event or by
test or procedures code.

Write code to events Filling in the form, control and menu event procedures to
respond to user actions.

Add form variables Creating form variables used by the form events and
procedures or externally by tests and module procedures.

Write form procedures Writing form procedures that can be called by form
events or externally by tests and module procedures to
perform additional tasks required by the form.

 To use a form, the following steps should be performed:

Step Description
Create a form variable Creating a variable in your module or in a procedure and

setting its type to the form name as it appears under the
form submodule.

Load the form Adding a Load statement to display your form on the
screen in your test or procedure. The Load statement uses
the form variable created.

Interact and Test the
form functionality

Verifying the form functions properly by interacting with
the form menus and controls. Writing code to set and get
the form properties, procedures, and variables using the
form variable.

Chapter 8 – Working with Forms 127

Creating a Form
The first step in the form development process is to create the form. In this example, you
will create a form within an ATEasy Program. Forms can also be created under other
ATEasy modules such as System or Drivers.

 To create a form:

1. Right-click on the Forms submodule under MyProgram and select Insert Form
Below from the context menu. A new Form called Form1 is created.

Creating the new form causes ATEasy to display the Form View as shown here:

The top pane of the form view contains the Form Design View showing the form and its
controls and menus. A grid used for control alignment is shown on the form client area; in
addition, blue margin lines are shown on the form. The margin is used to limit the area
where controls can be placed using a mouse on the form. The grid can be adjusted by using
the Grid and Margins command below the Arrange command on the Edit menu. The
Margins can be also dragged using the mouse to adjust the distance from the form border.

Code View

Variables View

Description View

Object Procedures/EventsForm Items/Objects

Form Design View

128 Getting Started with ATEasy

The area below the form design view displays two drop-down lists. The left drop-down list
shows the Form Items that can be edited including the form events, procedures and
variables, as well as the controls and menus included in the form. Selecting an item from
the Items drop-down list will refresh the second drop-down list and displays the procedures
of the selected item. Selecting a procedure from the procedures combo box makes that
procedure the current procedure.

The area below the combo box controls displays the current procedure description,
variables and parameters, and the procedure code.

Setting the Form Properties
The form’s properties window has several pages defining the different aspects of the form.
The most important elements are found on the General page. Here, the Form Name and
type are defined as well as the form’s caption, default menu bar, size and whether the form
is public (that is, can be used by other modules)

Additional Form properties pages include:

• Window – contains properties to determine the border style, its initial position, state
and other window properties.

• Drawing – contains the default drawing attributes such as pen, fill style, draw width
and more. This is used when using the drawing form procedures to draw on the form.

• Scale – contains the scale mode. The default scale mode is pixels. Scale mode is used
to specify different units for the coordinate system.

• Misc. – contains help files support for a form.

• Pictures – allows you to set a background picture for the form.

• Colors – contains properties to set the foreground and background colors of the form.
The foreground color is used when drawing text and lines on the form. The background
color is used to paint the client area.

• Fonts – contains a font selection that is used as the default font for controls. In
addition, the font is used when drawing text on the form.

As you can see, the form contains many properties. The ATEasy User’s Guide and the
Reference Guide cover them in more detail.

Chapter 8 – Working with Forms 129

 To set the Form Properties:

1. Open the MyForm Properties window by clicking the right mouse button on MyForm
and selecting Properties . The properties window opens.

2. Rename the form to MyForm.

3. Change the caption to My Form Example. The caption displays in the title bar of the
form. The properties window should look similar to the following:

Form Controls
Forms need to be populated with controls and menus in order to be useful. Controls are the
interface elements through which the end user makes choices or obtains information.
Buttons, text boxes, checkboxes, list boxes, and charts are all examples of controls supplied
with ATEasy. Controls have their own properties, methods and events to make them
suitable for particular purposes; for example, displaying text, or allowing the user to scale a
value.

Controls and menus are added from the Controls toolbar. The Controls toolbar appears on
the screen whenever the form view is active. It contains all the available controls that can
be placed on a form as shown here:

The first button in the toolbar (appears on the left side) is the selection tool. The second
button (showing a menu) is used to add a menu to the form. The rest of the buttons are
controls. To add any one of these controls, click on it, then click in the form client area, and
drag the control to the appropriate size.

130 Getting Started with ATEasy

ATEasy provides the following controls:

Type Description Appearance Tool
AButton Typical Windows button

with some added features.
Used for confirmation
(OK, Cancel, etc.)

AChart Displays a set of Y-data
versus a set of X-data
using one of several
predefined plot templates.

ACheckBox A check box indicates
whether a particular
condition is on or off. Use
check boxes in an
application to give users
true/false or yes/no
options.

AComboBox Combines the features of
a Text Box and a List
Box. Allows the user to
select either by typing text
into the Combo Box or by
selecting an item from its
list.

AGroupBox Used as a frame to group
several controls together.

AImage Displays a graphic image.

AImageList Does not have any user
interface. Stores a list of
images to be used by the
AStatusBar control.

N/A

ALabel Displays text. Also, used
to label controls such as
AListbox to describe their
content.

Chapter 8 – Working with Forms 131

Type Description Appearance Tool
AListBox Allows the user to select

an item from a given list.

ALog Based on Internet
Explorer. Provides a
versatile way to record
test results. Test data can
be routed to the Log
Control (instead of the
ATEasy standard Log) in
plain Text or HTML
formats.

APanel Container control. Used to
group several controls
under same container.
Hiding this control will
hide all its controls.

ARadioButton Presents a set of two or
more choices to the user.
Unlike check boxes, radio
buttons work as part of a
group; selecting one radio
button immediately clears
all the other buttons in the
group.

AScrollBar Horizontal and vertical
scroll bars allow you to
select a value by moving
the scrollbar thumb.

ASlider A control containing a
thumb, numerical, and
text labels. Supports a
variety of styles from
three main groups: slider,
knob, and meter (shown).

132 Getting Started with ATEasy

Type Description Appearance Tool
AStatusBar Used for displaying a

status bar on a form. The
status bar contains panes
that can display text,
images, keyboard state
and more.

ASwitch Represents a switch with
enhanced style and mode
features. The style can be
as a toggle (shown), a
slide, LED, push button,
and more.

ATab Allows definition of
multiple pages for the
same area of a form. Each
page consists of a certain
type of information or a
group of controls that the
application displays when
the user selects the
corresponding tab.

ATextBox Can be used to get text
input from the user or to
display text.

ATimer Does not have any user
interface. Used for
generating events
periodically. Can be used
to refresh the controls on
a form periodically.

N/A

AToolBar Used for displaying a
toolbar on a form. The
toolbar can contain
buttons, check button,
group buttons and menus.

Chapter 8 – Working with Forms 133

Adding Controls
In your example, you will be adding a chart control on the left and two buttons on the upper
right of your form.

 To add the controls to the form:

1. Click the AChart control on the Controls toolbar. Place your mouse pointer at the
upper left side of the form. Click and drag a rectangle that is approximately two thirds
of the size of your form.

2. Click the AButton control on the Controls toolbar. Place your mouse pointer at the
upper right side of the form. Click and drag a rectangle. When you let the mouse up, the
button is labeled btn1.

3. Copy the button. To copy, click on the button while holding down the CTRL key. Drag
the button to a position immediately below the first button. When you are finished, your
form will look similar to the following:

You now have all the controls you need and its time to set the visual appearance of the
Form. Next, you will need to place the controls and space them evenly. You also need to
make the button height and width to be the same.

134 Getting Started with ATEasy

 To adjust the size and location of the controls:

1. Click on btn1 to select the control. You can move the control using the keyboard’s
arrow keys. This is more precise than moving the control by dragging it with the
mouse. You can also size the control by dragging the selection handles or using the
keyboard by pressing the SHIFT key down and pressing the arrow keys.

2. Once btn1 is in the correct position, you can make btn2 align equal to the left edge of
btn1. To do that you must select multiple controls. Click on btn2 to select the control,
press the SHIFT key, and then click on btn1. Notice that the two controls are now
selected. The last control that you select is called the pivot control. Click on the Align
Left command from the Form Design toolbar or from the Arrange menu under the
Edit menu. Notice that btn2 is now aligned equal to the left edge of btn1.

3. While the two buttons are still selected, make btn2 have the same width and height of
btn1. Click on the Make Same Width command and then click on the Make Same
Height command (alternatively, you can select the Make Same Width and Height

 command). At this point btn1 and btn2 are aligned and are the same size.

4. Next, make the chart and top button align to the top edge. Using the same technique as
step two, select the chart (cht1). Holding the SHIFT key down, select btn1. Click the
Align Top command. Both controls are aligned to the top.

Setting Control Properties
Before you can continue, you need to change some of the properties of the controls. One
property to change is the Control’s name. ATEasy assigns default names to Controls such
as btn1, btn2, etc. Controls must have different names in order for ATEasy to be able to
access them individually. Since the default names do not mean much, you should change
them to a meaningful name describing the Control’s use. However, you should keep the
prefix in order to have standard naming conventions and to be able to distinguish between
different types of Controls.

As an example, you should use the prefix “btn” for all Button Controls. This way, when
you see a reference in the program to MyForm.btnClose, you know it refers to a Button
Control probably called “Close.”

Chapter 8 – Working with Forms 135

 To set the control properties for the buttons:

1. Double-click on btn1 to display its properties. The button property page displays.

2. On the General properties page, change the Name to btnClose.

3. Check the Default checkbox to make the button the default button. Selecting default
causes the button to be pressed when the user presses the ENTER key (and perform the
procedure assigned to that button). Only one button in a form can be designated the
default. Notice that the page also has a Cancel check box. This designates a button to
be a cancel button accepting the ESC key when the form is active as the user pressed the
button. This is usually used for a Cancel button on a form.

4. Click on the Control page to activate the page. Change the Caption to Close. Change
the Font3D property to 1 – raised w./light shading. This sets a unique look to the font
text on the buttons in your form.

5. Select btn2 and repeat step two, changing the Name to btnAcquire.

6. Repeat step four for btn2, changing the Caption to &Acquire. Adding the “&” in front
of a character allows the user to press ALT and the character immediately following the
“&” in order to select the button. The user can select buttons with one key stroke
instead of either using the mouse or pressing Tab until the control (button) has focus
and then pressing the space bar to press the button. Note the A now appears underlined
(A) in the form.

Note: If you want to select a character other than the first character of a button (such as in
the case that you have two buttons with the same first letter, for example, Acquire and
Add), you may place the “&” immediately in front of the character to use with the Alt key.
For example, to use the first “d” of Add, you would enter A&dd. ALT + D would trigger the
button, and the text on the button face would appear as Add.

136 Getting Started with ATEasy

 To set the control properties for the chart:

1. Select the chart and activate the General page. Change the control’s Name to chtData.

2. Activate the Axes page. The page displays a list of all the axes available via a list box.
Click on the X-axis in the list and set Max to 200. Click on the Y-axis and set the Min
to –1.5 and the Max to 1.5. This causes the chart to display 200 samples (maximum)
and the values of the data will be between –1.5 to 1.5.

3. Activate the Ticks page and change the X-Axis Spacing to 1 – By Division. Change the
MajorDivision to 4 and the MinorDivision to 2. Do the same for the Y-Axis, changing
the Spacing to 1 – By Division, the MajorDivision to 6, and the MinorDivision to 2.

4. Activate the Plots page and add a second plot by clicking on the New button . Your
chart will contain two plots, each displaying its own data in a line on a chart. Name the
second plot, Plot2. Move it below Plot1 on the list by clicking the move down button

. Change the LineStyle and PointStyle color to yellow, by using the color drop
down button to the right of each . Each plot now displays in a different color Plot1
in cyan and Plot2 in yellow.

5. Change the background of the chart to green by activating the Colors page. Select
BackColor from the Property Name list box and select green.

Your form should appear as below:

Chapter 8 – Working with Forms 137

Setting Controls Tab Order
Your next step is to set the Tab Order of the controls in the form. The tab order sets the
order of controls in the form. This order is used when the user presses the TAB key to move
the focus from one control to the next. Typically, form controls tab order is organized from
top to bottom, then, from left to right. Your form controls may already be in the correct
order; however it is a good habit to verify that the tab order is correct.

 To set and verify the form controls tab order:

1. Right-click on the Form and select Arrange, then Tab Order , from the context menu.
The controls are displayed with blue labels indicating their order.

2. Click on the chart label (0) set it to be the first in the tab order, Next click on the Close
button (1) and then click on the Acquire button (2).

Testing the Form Layout
Your form is now ready for a test of its layout. ATEasy has a special tool allowing you to
execute the form in order to test the form’s initial display without writing code to load or
display the form.

 To test the form layout and initial display:

1. Click on Test Form! from the Form Design toolbar. This tool is also available
below Arrange in the Edit menu. The form is now displayed.

2. Press ALT + A to check if the Acquire button is pressed. Press ENTER to check if the
default button Close is pressed. Press the TAB key a few times to check the tab order.

3. Press ESC to exit the Test Form! mode.

138 Getting Started with ATEasy

Using Events
ATEasy forms, controls and menus generate notification messages to your application
when a certain condition occurs. This can be when the user moves the mouse on top of the
object, when the user clicks on the object, and more.

You can respond to the message by placing code in the event procedure that is associated
with the notification message. ATEasy will only call event procedures that have code. If
you leave the event empty, ATEasy will not call the event. The code that you do place in
your event should be short. This is because when the event code is executing, no other
events are sent to the form. In addition, if a test program is running while the form is
executed, the test program is suspended until the event is complete.

Form Events are events related to the form itself and not to the controls in the form or the
menus. Form Events include OnLoad – when the Form is initially loaded, OnClick – when
the mouse is used to click on the form (in an area without controls), OnResize - when the
form is sized, and more. When the notification arrives, ATEasy calls the message you
programmed the form to use. For example, you can program the Form to change its Caption
or its background when the Form is selected.

Control and menu events are similar except they refer to notification messages received
from the control. For example, the AButton control has an OnClick event, the ATimer
control has an OnTimer event, and so forth.

Writing an Event for the Close Button
You will now add a simple event to MyForm. This event controls what happens when the
Close button is pressed.

 To write the btnClose.OnClick Event:

1. From the form view, select btnClose from the form items combo box. The right combo
box now displays the available events for the AButton control.

2. Select the OnClick event. Click in the procedure space and begin typing:

Unload Form

The Unload statement will close the form window on the user’s screen. The Form
object will still exist after that line, and you can still use the form variables and
procedures after this line, however the visible form is erased from the screen. When the
user closes the form from the title bar by clicking on the X button, ATEasy will unload
(close) the form automatically.

Chapter 8 – Working with Forms 139

Now, if you collapse the right combo box you will see that all events are shown with
gray text while OnClick now appears normal text, showing that the event is used.

Before you can add the code for the Acquire button and chart, you need to add some
variables.

Adding Variables
Add a form variable to a form just as you do with any other module. You will add three
variables, two arrays, and one integer that stores the number of times the user clicked the
Acquire button.

 To add form variables:

1. From the form view, select Variables from the form items combo box. The view below
now shows a variables view.

2. Right-click on the variables view and insert the following variables and properties:

Name Type Dim Dim Size Description
m_adPlot1 Double 1 200 Array for Plot1
m_adPlot2 Double 1 200 Array for Plot2
m_iAcquire Short 0 n/a # times Acquire was called.

Note the m_ is used to tell the user that the variable is a member variable of the form.

Your variables view should look similar to the following:

140 Getting Started with ATEasy

Writing an Event for the Acquire Button
Now you can write the code for the OnClick event of the Acquire button. This event fills
the form arrays by calling a form procedure, then it refreshes the form chart to display the
array content. The event also increments the m_iAcquire form variable and displays that
number in the chart caption.

 To add an Event with Variables:

1. From the form view, select btnAcquire from the form items combo box. The right
combo box now displays the available events for the AButton control.

2. Select the OnClick event. Click in the procedure space and begin typing:

! increment the # of times acquire was called

m_iAcquire=m_iAcquire+1

! set chart caption

chtData.Caption="# of Sin Cycles:"+str(m_iAcquire)

! acquire and show data

AcquireData(m_adPlot1, m_adPlot2)

chtData.SetData("Plot1", m_adPlot1,,,, True)

chtData.SetData("Plot2", m_adPlot2,,,, True)

Note that while you are typing the member operator ‘.’, a code completing member list
pops up to display the available control members as shown here:

Chapter 8 – Working with Forms 141

The user can view this list by browsing in the internal library AChart control entry. The
Caption is a property of the chart control while SetData is a method performing an action
on the control as shown here:

The next step will be to write the AcquireData form procedure, which will be used to fill
the plots’ arrays with sample data.

Writing the AcquireData Procedure
Just as you have written procedures before in other modules, you will write a procedure
within your form. This procedure initializes the arrays with a dummy waveform. The first
array will display a sin wave with increasing frequency. The second array will be filled
with a sin wave that cycles m_iAcquire times.

 To write the form procedure:

1. From the form view, select Procedures from the form items combo box. The right
combo box now displays a list of the form procedures, which is initially empty.

2. Select Procedure Below from the Insert menu. A new procedure is created.

3. From the Properties window, change the name to AcquireData and the description to
Initialize arrays with a dummy waveform.

142 Getting Started with ATEasy

4. Create the following procedure variables:

Name: adData1
Parameter: Var
Type: Double
Dim: 1

Name: adData2
Parameter: Var
Type: Double
Dim: 1

Name: i
Parameter: None
Type: Long
Dim: 0

Name: iSize
Parameter: None
Type: Long
Dim: 0

Your screen should now look similar to the following:

5. Add the following code in the procedure code area:

iSize=sizeof(adData1)/sizeof(double)

for i=0 to iSize-1 do

 ! freq increase over samples

 adData1[i]=sin((PI*i)/(iSize-i+1))

 ! m_iAcquire # of sin cycles

 adData2[i]=sin ((PI*i*m_iAcquire*2)/iSize)

next

Chapter 8 – Working with Forms 143

The Load Statement
At this point, your form is complete. The next step is to write code to load the form from
the program. Loading a form to display it is done using the load statement. The load
statement has three parameters.

• The first parameter is the form variable, which is used to hold the form object. The
variable type name should have the form name as appears below the Forms submodule.

• The second parameter is optional and indicates whether the form is created using the
modal or modeless modes. When using modal mode, the load statement does not
return to the caller until the form is unloaded. The form may be unloaded either by
using the unload statement or when the user clicks the X button in the form title bar (if
available). Modeless form returns immediately to the caller and the form runs in
parallel to the code running after the load statement.

• The third and optional parameter is the form’s parent window handle. A window
handle is a 32-bit number used to uniquely identify the window in the current process.
Each form has a handle that can be retrieved using the hWnd property. Passing 0 as a
handle (or omitting the argument) uses the Windows desktop window. Forms created
are always displayed on top of their parent. Additionally, when the parent is destroyed,
the form is also destroyed. When a form is created using modal mode, the parent is
disabled after the form is created and enabled, and is activated as the form closes.

144 Getting Started with ATEasy

Using the Form
In this example, load the form within a new test you will create in MyProgram. You will
also create a variable that will have MyForm as a type.

 To use the form:

1. Define the form variable. Insert a new variable under the MyProgram variables
submodule. Rename it to frmMyForm. Set its type to be MyForm as shown here:

2. Insert a new Task in MyProgram. Name the task Forms and the test as MyForm.

3. In the MyForm test code view, type the following lines of code:

! creates the form in modal mode

Load frmMyForm, TRUE

! deletes the form object

frmMyForm=Nothing

The first statement loads the form in modal mode and uses the windows desktop as a
parent. The second statement deletes the form object releasing all resources associated
with the object. This statement will be executed after the form window is destroyed.
Note that before destroying the form object, you can still use form public variables and
procedures (for example, frmMyForm.m_iAcquire if it was declared as public).

Chapter 8 – Working with Forms 145

Testing the Form
You can now execute the code to test your form.

 To run the form test code:

1. Make sure the test code is the active view. Select Doit! from the Debug Menu or from
the Build/Run toolbar.

2. Click twice on the Acquire button. The form should now display two sine cycles as
shown here:

3. Click on the Close button.

ATEasy provides additional tools to test the form. You can use the Formit! from the
Debug menu or from the toolbar. The command executes a load statement on a temporary
variable that ATEasy will create.

146 Getting Started with ATEasy

C H A P T E R 9 – W O R K I N G W I T H E X T E R N A L L I B R A R I E S

About External Libraries
This chapter discusses extending ATEasy functionality by adding and interfacing with
external libraries. It provides an example of how to write an ISA PC board driver that uses
a Dynamic Link Library to program the board. It provides more details of how to initialize
a driver. It shows how to handle errors in drivers and in the application. This chapter
explains how to use Type Libraries and COM objects and classes, as well as providing an
example for using a Microsoft Excel COM object.

Topic Description
Overview of Libraries Explains two types of libraries that can be used in an

ATEasy module: DLLs and Type Libraries.
Creating a DLL Based
Driver

Explains how to create a driver and to add a DLL.
Also shows how to use and configure a DLL-based
driver.

About the GXSW.DLL Provides an example for a DLL procedure and
provides an example of a C header file.

Declaring DLL Procedures Explains how to define DLL procedures and
parameters.

Importing C/C++ header
file

Explain how to import C/C++ header file (.h) to
declare DLL procedures, types and constants

Using DLL Procedures Shows how to call DLL procedures.
Driver Initialization Shows how to use the driver’s OnInit module event to

initialize the driver and how to hide the board handle
parameter used to identify the board to the driver.

Handling Errors in a Driver Explains how to handle errors in the driver.
More about Error Handling Provides more details regarding ATEasy error types

and about error handling in an application using the
OnError event.

COM Objects and Type
Libraries

Provides details regarding using COM objects and
external Type Libraries.

Using the Excel Type
Library

Provides an example using the Excel Type Library.

Using the Object Data Type Provides an example using the Object Data Type.
.NET Assemblies Using .NET assemblies

148 Getting Started with ATEasy

Topic Description
Using VI Using LabView VI and LLB files

Overview of Libraries
Libraries are external modules containing procedures, classes and other programming
elements. ATEasy can use two kinds of libraries:

• Dynamic Link Libraries (DLL) – which are files, typically with .DLL file extensions,
containing procedures. Most PC-based instrument drivers are now shipped as a DLL
library. Microsoft Windows is also built from a set of DLLs that provide access to its
services. DLLs do not contains type definition of the procedures and their parameters
they hold, ATEasy can make use of C/C++ header files (.h) that is usually supplied
with the DLL and create the procedures, types and constants definitions by reading
them from the header file and creating ATEasy equivalents.

ATEasy version 7.0 supports creating a DLL by setting the project target type to DLL.
With the Build Command, an ATEasy DLL will be created, and it can in turn be used
by other ATEasy or other programming languages projects. For more information, refer
to ATEasy Users’ Guide.

• Type Libraries – which contain classes, procedures, and other programming elements
and are based on Microsoft component technology (COM). Type libraries allow you to
make use of classes exposed by external libraries or applications. Examples of type
libraries are: Active X controls or MS-Excel. Unlike DLL where you are required to
define the programming elements included in it, a type library contains a complete
definition of the programming elements exported by the library.

• .NET Assemblies – which contain classes, procedures, and other programming
elements and are based on Microsoft .NET technology. Unlike DLL where you are
required to define the programming elements included in it, a .NET assembly contains
a complete definition of the programming elements exported by the library.

In this chapter, you will learn how to use an instrument driver DLL for the GX6115, a 3U
PXI high current relay board. The driver uses a DLL GXSW.DLL provided with ATEasy.
More robust examples for using DLLs can be found in the examples provided with ATEasy
in the Language.prj and DLL.prj (along with the DLL sources written in C) files located in
your \Examples subfolder.

You will also learn how to use a type library. We will use the MS-EXCEL type library to
use Excel. A more complete example for this can be found in Excel.prg located in your
\Example subfolder. Also provided in your examples folder is a .NET assembly including
sources and ATEasy application DotNet.prj and C# programming language .NET sources
for the assembly used.

Chapter 9 – Working with External Libraries 149

Libraries are added to any module under the Libraries submodule. Each module can have
its own libraries, which, if made public, can be used by other modules. Once a library is
added to a module, you can call procedures and use classes residing in the library. In
addition, if a type library contains an Active X control, then the control will be added to the
Controls toolbar. It can be used by dragging it onto an ATEasy form in a similar way to the
way you use ATEasy built-in controls.

Creating a DLL-Based Driver
In this example, create a driver, MyGx6138.drv, which uses a DLL GXSW.DLL. The
driver is similar to the GX6138.drv driver for the 38 Relay (switching) board from Geotest
that is part of the GXSW package that can be download from Geotest web site. We will
create ATEasy DLL procedure to describe the procedures residing in the DLL. These
procedures will be used to program the GX6138 board. For reference, you will also add the
GX6138.drv driver that is provided in the ATEasy Drivers folder.

 To create a driver using GXSW.DLL:

1. Right-click on the Drivers submodule in MySystem. Select the New Driver
command from the context menu. A new driver is created. Rename the driver name to
MyRELAY from the workspace window.

2. Right-click on Libraries submodule and select Insert Library Below from the
context menu. The Insert Library dialog is displayed. This dialog is used to insert a
Type Library, a .NET assembly or a DLL.

3. Activate the DLL tab and click on the Browse button. The Select File dialog appears.

4. Select GXSW.DLL from the Windows System folder (System32 folder on Windows
NT/2000/XP/VISTA or System Folder under Windows 9x/Me) and click Open.
Alternatively, you can type GXSW.dll; ATEasy will find it since it’s in the Windows
default search path for DLLs. The DLL file name is now displayed in the edit box as
shown here:

150 Getting Started with ATEasy

5. Click Insert. A GXSW library is added under the new driver Libraries submodule
with the default name of GXSW.

NOTE: the Import C Header Files fields will be used later in this chapter to import
the DLL procedures, for now, we will declare these procedures manually.

6. Right-click on the library and select Properties from the context menu. The library
properties page is displayed. Check the Public checkbox. By default, DLL procedures
are attached to commands and need not be public. Since you will be using the DLL
procedure within the program, you should make it public so other modules can use the
procedure.

7. Right-click on the Drivers submodule and select Insert Driver Below from the
context menu. The Insert Driver dialog displays. Select GX6138.drv from the ATEasy
Drivers folder and click Open. The GX6138 driver will be inserted to the system type
with a name of RELAY for the driver shortcut (taken from the driver default name
property).

Chapter 9 – Working with External Libraries 151

8. Before you use the RELAY driver, you must configure its interface. Right-click on the
Driver Shortcut symbol in the Workspace window and select Properties . The
Driver properties appear. Activate the Misc page. Select the Slot, type in the GX6138
PXI slot number as appears in the PXI-PCI Explorer application. The PXI-PCI
explorer can be start by selecting it from the Geotest, HW from the Windows Start
menu. The Misc page should display as shown here:

The Slot parameter is used to supply the driver the PXI slot number used when
initializing the board. The SkipOnInit parameter will be use to signal the driver to not
initialize the driver when the driver OnInit event is called, leaving it empty will cause
the driver to be initialize when you start running the application. The parameters can be
retrieved by the driver using the Driver.Parameters("Slot") expression. This driver
uses DLL to communicate with the instrument and does not use I/O Table to
communicate with the instrument and therefore they have the None driver interface
(default for new drivers).

9. Click Save All to save your work. When prompted save the new driver to
MyGx6138.drv in the MyProject folder.

Once the library is added to the driver, you need to define the procedures residing in the
DLL since a DLL does not contain type information about its procedures. To define these
procedures you need to look into the DLL documentation or use the C programming
language header file that is sometimes provided with the DLL. Your next step will be to
declare the procedures under the library you just inserted. Before you start, let’s look at the
GXSW.DLL header file.

152 Getting Started with ATEasy

About the GXSW.DLL
You can download and install the GXSW package from Geotest web site. The package
contains driver for all Geotest PXI switching boards and is supplied with the C
programming language header file to describe its procedures. The header file GXSW.H can
be found in the GXSW driver folder (C:\Program Files\ GXSW). Opening the file with a
text editor and browsing will show you the prototypes of many of the boards supported by
the GXSW package. The GX6138 most relevant sections in this file are shown here:

//**
// GXSW General purpose functions
//**
VOID WINAPI GxSWGetErrorString(SHORT nError, PSTR pszMsg, SHORT

nErrorMaxLen, PSHORT pnStatus);
VOID WINAPI GxSWGetDriverSummary(PSTR pszSummary, SHORT nSummaryMaxLen,

PDWORD pdwVersion, PSHORT pnStatus);

// GTXXXPanel() constants
// nMode for panel functions
#define GXSW_PANEL_MODELESS 0
#define GXSW_PANEL_MODAL 1
// Relay State
#define GXSW_STATE_OPEN 0
#define GXSW_STATE_CLOSE 1

//***
// Gx6138 functions
//***
VOID WINAPI Gx6138Initialize(SHORT nSlot, PSHORT pnHandle, PSHORT

pnStatus);
VOID WINAPI Gx6138Reset(SHORT nHandle, PSHORT pnStatus);
VOID WINAPI Gx6138Panel(PSHORT pnHandle, HWND hwndParent, SHORT nMode,

HWND * phwndPanel, PSHORT pnStatus);
VOID WINAPI Gx6138GetBoardSummary(SHORT nHandle, LPSTR pszBoardSum,

SHORT nSumMaxLen, PSHORT pnStatus);

VOID WINAPI Gx6138Close(SHORT nHandle, SHORT nChannel, PSHORT

pnStatus);
VOID WINAPI Gx6138Open(SHORT nHandle, SHORT nChannel, PSHORT pnStatus);
VOID WINAPI Gx6138GetChannel(SHORT nHandle, SHORT nChannel, PSHORT

pnState, PSHORT pnStatus);
VOID WINAPI Gx6138SetChannels(SHORT nHandle, LONG lHighChannelStates,

LONG lLowChannelStates, PSHORT pnStatus);
VOID WINAPI Gx6138GetChannels(SHORT nHandle, PLONG plHighChannelStates,

PLONG plLowChannelStates, PSHORT pnStatus);

// First and Last channels numbers
#define GX6138_CHANNEL_FIRST 1
#define GX6138_CHANNEL_LAST 38

Chapter 9 – Working with External Libraries 153

Declaring DLL Procedures
Declaring procedures in a DLL is divided into two steps. The first step is to define the
procedure name and return value. The second step is to define the procedure parameters. In
most cases, the parameters are described in C programming language, that require you to
translate the C types mentioned in the header file to ATEasy data type.

In general, C and ATEasy types are very similar in the type name and in internal
representation of the type. Here are some guidelines:

• C pointers can be converted to VAR parameters. For example the C data type short *
can be converted to ATEasy data type VAR Short. If no pointer is used, use the
ATEasy VAL parameter.

• Arrays and Strings are pointers in both C and in ATEasy. You can use both VAL and
VAR. For example char * (or LPSTR) can be VAL String or VAR String. You
should use VAR if you plan to change the string and reflect the change to the caller.
When declaring VAL, ATEasy creates a copy of the variable and passes it to the DLL
procedure. Calling with VAR is faster.

 To declare the DLL procedures:

1. Right-click on the Procedure below the GXSW Library in the tree of the document
view and select Insert Procedure Below . A new procedure is inserted.

2. Right-click on the new procedure. Select Properties from the context menu. The
DLL procedure property page displays. Type the procedure name: Gx6138Initialize
and check the Public checkbox. Set the description to: Initializes the driver for the
board at the specified base address.

3. Right-click on Gx6138Initialize and select Insert Parameter Below . A new
parameter is inserted.

4. Rename the parameter to nSlot. The new parameter has a type of VAL Short – this
matches the C Type SHORT.

5. Repeat steps three and four for the pnHandle and pnStatus parameter. Their parameter
type must be change to VAR since they are declared as LPSHORT (short *). At this
point, the procedure is declared and can be used.

6. Repeat steps one through five for each of the procedures that are defined in the
previous page. You can use Copy and Paste, or Drag and Drop to expedite your work.
Make sure the string parameters are defined as VAR since they return a value. You can
use the Gx6138.drv driver as a reference or for copying the procedures defined there
instead of typing them.

154 Getting Started with ATEasy

At this point, the DLL procedures are defined and ready to use. Your DLL procedures view
should look similar to this:

As you can see, the DLL procedures and their parameters are documented. This is used
when the user uses the procedure.

Importing C Header File
Declaring procedures, types and constants manually can take considerable time. ATEasy
can make use of C header file supplied with DLL to import procedures, types (struct, enum
or typedef) and constants. C data types that are specified in a header file can have various
interpretations. For example the C data type ‘unsigned int *’ when specified as a procedure
parameter can be interpreted as a parameter that returns a DWord (Var DWord) or array of
DWord (Var DWord []) or accept array of DWord (val DWord []). During the Import
process ATEasy will ask the user to resolve Ambiguous data types by presenting the
possible options. Selecting the right option is essential.

Chapter 9 – Working with External Libraries 155

In the following example we will be using the Gx6138.h as an example for importing a C
header file. The file was extracted from GXSW.h that is part of the GXSW package that
can be installed from Geotest web site. The Gx6138.h file is installed by ATEasy in the
Examples folder.

 To import C header file:

1. Create a new driver by right click on the system from the workspace window and select
New Driver

2. Under libraries insert the GXSW.DLL as explained earlier in this chapter.

3. Right click on GXSW DLL under procedures and select Import C Header File
(.h)…

4. Select the C:\Program Files\ATEasy\Examples\Gx6138.h and check the following
options as shown here:

156 Getting Started with ATEasy

The Additional Header Files (.h): is used when you need to specify additional header
files needed to import (separated by semicolons). The Include Header Directories is
used to specify include directories that are needed when trying to resolve data types
defined in other header files. The preprocessor button displays a header file that
contains common definition and always parsed before the actual header file. This file
can be edited to add or change types. The other options are documented in the On-Line
help.

5. Click OK to import the header file.

6. ATEasy will prompt with the following Ambiguous C Type dialog:

This dialog will be displayed for each C data type that ATEasy cannot find exact
match. In this case the PSHORT data type is offered with 3 options Var Short and two
array types. Since the status is returned from the procedure as a single number and not
an array select the Var Short. To accelerate the migration check Replace Same
name/same type and Don’t ask checkboxes as shown here and click Replace.

Chapter 9 – Working with External Libraries 157

The newly created GXSW library will now be created and will show similar procedures to
the one declared manually earlier in this chapter. You can remove the new driver created
from the system.

Using DLL Procedures
At this point, the DLL procedures are defined. Since we made the procedures public, you
can call the procedures directly from any of your application modules, procedures, or tests.
You need to define the variables nStatus and nHandle as short. Then, you need to call the
Gx6138Initialize procedure as shown here with the PXI slot number (5) as displayed in
the PXI-PCI Explorer:

Gx6138Initialize(5, nHandle, nStatus)

This will be used to initialize the board to retrieve the board handle, later it will be used
with all other commands such as Gx6138Close, which closes relay #2 as shown here:

Gx6138Close(nHandle, 2, nStatus)

Alternatively, you can use the GXSW library to call the procedure:

GXSW.Gx6138Close(nHandle, 2, nStatus)

Or, by using the driver name:

MyRELAY.GXSW.Gx6138Close(nHandle, 2, nStatus)

Or even:

MyRELAY.Gx6138Close(nHandle, 2, nStatus)

Note that the first two examples call the RELAY driver instead of the MyRELAY driver if
the RELAY driver is defined as the first driver in the system. To avoid this, the last two
methods are preferred.

As you can see, calling a DLL procedure is very similar to calling an ATEasy procedure.
Typically, after defining the DLL procedure, you will create Commands to provide the user
a better interface than procedures. In addition, use commands to provide a simpler interface
to hide the nHandle and pnStatus parameters each of the DLL procedures have. So,
instead of calling Gx6138Close with tree parameters as shown previously, enter the
command as:

RELAY Close (2)

158 Getting Started with ATEasy

This code is a lot simpler; it hides the implementation details from the user. The user does
not need to know about nHandle or about error handling and nStatus as explained in the
next section.

Driver Initialization
As you can see from these calls, you need to supply the board handle nHandle every time
you call the driver procedures. Instead, you can define a driver variable m_nHandle that
will have the driver handle. Every time you need to access the driver, you can use that
variable. The variable can be initialized in the driver OnInit event that is called only once
when the application starts. This relieves the user from calling any initialization code before
calling the driver commands.

Looking over the Gx6138 driver OnInit event will show you just that: OnInit has the
following code:

if nSlot=0 then nSlot=Driver.Parameters("Slot")

if nSlot=0 then

error -1, "Driver Parameter 'Slot' not set to the board PCI
slot number.\nPlease set the parameter value from the
driver shortcut property page."

endif

The Gx6138 PXI slot number if not supplied as a parameter to the Initialize is retrieved
from the driver shortcut using the Parameters ADriver property. When you insert a driver
into your system, you should set the Slot number parameter of the board.

Looking over at the driver procedure to see the code for the Initialize procedure, you will
see the following code:

Gx6138Initialize(nSlot, m_nHandle, nStatus)

CheckError(nStatus)

As you can see, the Gx6138Initialize accepts the nSlot and returns the handle to
m_nHandle and the status to nStatus. nStatus is passed to a driver procedure called
CheckError, which provides error handling for the driver as explained in the next section.

Chapter 9 – Working with External Libraries 159

Handling Errors in a Driver
As you can see from the GXSW DLL procedures, all functions have a parameter nStatus
that is used to return a status indicating if an error occurs (<0). Ideally, you should check
the return value after each call as shown here:

Gx6138Close(m_nHandle, 2, nStatus)

If nStatus<>0 then

! error do something.. like abort or MsgBox()

endif

Placing the return-value-checking code after each call in the test program makes the
program very long and hard to read. Instead, you can call a single error-checking procedure,
the CheckError driver procedure, to perform that test. Call CheckError with the nStatus
parameter returned from the DLL procedure as an argument.

CheckError shows the following code:

if nStatus<0 then

 m_lLastError=nStatus

 GxSWGetErrorString(nStatus, sError, 256, nErrorStatus)

 error nStatus, sError ! generate exception

endif

The function checks to see if nStatus contain an error code. If it does, it retrieves the
description of the error and calls the ATEasy statement error. The error statement
generates an ATEasy run-time error displaying the error message returned from the DLL.

Looking through the RELAY driver commands such as RELAY, Close, and more reveals
that when the user uses the driver commands to program the board, an internal procedure is
called. It performs the action such as Gx6138Close and then checks to see if an error
occurs.

160 Getting Started with ATEasy

More about Error Handling
ATEasy run-time errors can be generated using the error statement or as a result of a run-
time error such as divide by zero, communication failure and more. By default, ATEasy
will display a message box displaying the error number, text and location of where the error
occurred in your code. The message will contain the following buttons:

• Abort – Pressing abort will call the OnAbort() event sequence and could abort the
program.

• Ignore – continue execution with the statement following the statement that
caused the error.

• Retry – will display only retry able errors such as communication error. Retry will
cause the statement causing the error to be called again.

• Pause – this button is available only when running from the development
environment. Pressing pause will cause the execution to be paused and will cause
ATEasy to display the statement causing the error. The user, then can watch
variables, changes the current statement and debug.

ATEasy applications can trap and handle errors before the default message box is
displayed. You can place code in the OnError() module event to handle error and can
handle errors programmatically using the abort, retry, ignore and pause statements. In
addition the try-catch statement can handle errors locally and provide local error and
exception handling. In addition the GetErrorModule(), GetErrorNum() and
GetErrorMsg() internal functions can be called to retrieve error information.

The driver procedure and the CheckError procedure causes the user to concentrate on the
test code without the need to check for errors after each statement. It also provides the test
program or the application with a single point (the OnError() module event) area in which
to place the error handling code.

Chapter 9 – Working with External Libraries 161

COM Objects and Type Libraries
ATEasy provides extensive support for using COM objects. COM Objects are software
components based on the Microsoft’s Component Object Model. In this model, one
application can create or use other application objects by using the CreateObject or
GetObject functions as shown here:

ob=CreateObject(”Excel.Application”)

The CreateObject receives a Program ID string, “Excel.Application,” to identify the class
the user wants to create. Every COM object has a unique program ID to identify itself.
Once the object is created, it is assigned to the ob, object variable, which you define in your
application.

The object ob variable can be defined in ATEasy in two ways. You can use the Object data
type or you can add a Type Library to the ATEasy Libraries submodule and use the object
class name (or control name) as the data type. Using the first method is called Late
Binding. The second method is called Early Binding. In Early Binding, ATEasy uses the
type library and the variable type to check for compiler errors when you build your
application. In Late Binding, the object properties and methods are assumed to be correct
at design time and can be checked only at run-time.

162 Getting Started with ATEasy

Using the Excel Type Library
You are now ready to create and use the object using the Excel type library (early binding).

 To load the Excel Type Library:

1. Right-click on MyProgram Libraries submodule and select Insert Library Below .
The Insert Library is displayed showing the Controls page. The controls page displays
the ActiveX controls type libraries installed on your system.

2. Activate the All ActiveX Page to display all the available type libraries. Browse
through the list of libraries displayed in the list box and select and check the Microsoft
Excel Objects Library. (If the library is not displayed in the list, you do not have
Excel installed on your computer.) The type library file path and file name is displayed
below the list box as shown here:

3. Click Insert. A new library is created under the Libraries with the default name of
Excel.

Chapter 9 – Working with External Libraries 163

Looking through the Excel library under the Libraries submodule you can see the library
contains Classes, Controls (ActiveX controls), Modules (global procedures similar to the
one found in the Internal library), Types (Enum, Struct and TypeDef) and Variables.
Modules, Controls and Variables sub modules are not display since they are empty for
this type of library. Expanding Classes, you will find the Application class, which contains
Methods, Properties and Events. You will use the Caption and Visible property to set
and make visible the Excel window caption. You will also use the Cells property to read
and write to the spreadsheet cells.

Your next task is to create an Excel object from the Application class and to call properties
and methods belonging to that class.

 To use the Excel Application class:

1. Right-click on the MyProgram Variables submodule and select Insert Object Below
. Open the variable properties window and rename the variable to xlapp. Change its

type to Excel.Application by selecting it from the browse button as shown here:

.

2. Declare the following program variables: i as Long; iSize as Long; ad as a one-
dimensional array of 5 elements of type Double; and as as a one-dimensional array of 5
elements of type String.

3. Insert a new Task under MyProgram. Name the task Excel and the test as Using Early
Binding.

164 Getting Started with ATEasy

4. Type the following lines of code in the test code view:

xlapp=CreateObject("Excel.Application")

xlapp.Visible=TRUE

xlapp.Caption="ATEasy Excel Demo Using COM"

xlapp.Workbooks.Add()

! prepare data

as={"US-West", "US-East", "US-Central", "Europe", "Israel"}

ad={2123300.00, 2323300.00, 1123300.00, 1523300.00,
1200000.00}

iSize=sizeof(as)/sizeof(as[0])

! fill cells

for i=1 to iSize

 xlapp.Cells.Item(i, 1).Value = as[i-1]

 xlapp.Cells.Item(i, 2).Value = ad[i-1]

next

! check if cells got the data

if xlapp.Cells.Item(1, 1).Value<>as[0]

 TestStatus=FAIL

endif

Chapter 9 – Working with External Libraries 165

5. Click Doit! to test the code you have just written. You should see the following
Excel window:

Using the Object Data Type
Your next example will be to create the same test using late binding.

 To create an Excel application using the generic object type:

6. Right-click on the MyProgram Variables submodule and select Insert Object Below.
Open the variable properties window and rename the variable to ob and change its type
to Object as shown here:

.

7. Insert a new test under the Excel task and name it as Using Late Binding.

166 Getting Started with ATEasy

8. Type the following lines of code in the test code view:

ob=CreateObject("Excel.Application")

ob.Visible=TRUE

ob.Caption="ATEasy Excel Demo Using COM"

ob.Workbooks.Add()

! prepare data

as={"US-West", "US-East", "US-Central", "Europe", "Israel"}

ad={2123300.00, 2323300.00, 1123300.00, 1523300.00,
1200000.00}

iSize=sizeof(as)/sizeof(as[0])

! fill cells

for i=1 to iSize

 ob.Cells.Item(i, 1).Value = as[i-1]

ob.Cells.Item(i, 2).Value = ad[i-1]

next

! check if cells got the data

if ob.Cells.Item(1, 1).Value<>as[0]

 TestStatus=FAIL

Endif

As you can see the code for early and late binding is almost identical. The only
noticeable difference is the use of the cells property, which in early bind returns a
Range object and in late bind accepts parameters directly in order to access the
worksheet cell.

9. Click Doit! to test the code you have just written. You should see the same Excel
window as shown in the previous topic.

Chapter 9 – Working with External Libraries 167

Using .NET assemblies
.NET assemblies are .NET libraries that contain classes and their definition. Using .NET
assemblies from ATEasy is similar to using COM type libraries. You first insert the
assembly using the Insert Library Below command. Then you activate the .NET
Assemblies page, this page displays the .NET assemblies and their classes taken from
assemblies that are stored in the following folders:

1. Private Assembly can be stored in your application folder or subfolders.

2. Global Assembly Cache (GAC). Located under Windows Assembly folder. This
folder is used to store third party assemblies.

3. .NET Framework folder. Located under Windows Microsoft.NET\Framework
folder.

ATEasy will also use these folders to locate the assembly at run-time if the assembly file
name stored in the library sub-module contains no path (i.e. assemblyfilename.dll). After
locating the assembly that you wish to use, check the assembly or individual classes from
the assembly that you wish to use and click Insert. ATEasy then, will create a library that
contains the classes, methods, variables and properties as selected. Additional classes and
assemblies that are referenced by the classes or assembly you selected are also loaded and
displayed below the assembly in the Referenced Libraries sub module. ATEasy support
many programming language features that that are supported by .NET including
inheritance, multiple constructors, overloading of methods and properties, virtual members,
static members, early and late bound objects and more. These features are shown in the
DotNet example (see DotNet.prj in the ATEasy Examples and Examples\DotNet folders).
The example contains a .NET assembly along with it’s C# source code that demonstrate
some of the programming concepts used by .NET.

Using .NET classes is similar to using COM classes, you create a variable using the new
operator and assign the result to an object of type Object or the class you created as shown
here:

obCls1_1=new DotNetClass1()

obCls1_2=new DotNetClass1(True)

The first line create an object from the DotNetClass1 and the second one creates another
one but uses a different constructor that receives True as parameter.

Calling a method or a property or variable of the class is similar to using COM classes (e.g.
ob.Method(), or ob.Property or ob.Variable).

Destroying an object is also similar to COM. The following statement will destroy the
object:

obCls1_2=Nothing

168 Getting Started with ATEasy

Using LabView® VI and LLB files
ATEasy allow you to use National Instruments LabView® Virtual Instrument Files from
within your application. The two available files types are supported: VI file that holds a
single Virtual Instrument panel and LLB that hold multiple VIs.

To use a VI you must import it first using the Import LabView Virtual Instrument File
(.vi, .llb)… command . Once you import the LLB or VI files ATEasy will create a
procedure for each one of the VI that was imported. These procedures contain code that is
using the ATEasy internal function GetVi that returns a LabView ActiveX object used to
call the VI. Currently ATEasy supports VI's created with LabView version 7.0 and 7.1 and
you must have a matching version of LabView run-time version in your machine as well as
the VI referenced libraries in order to call the VI. The LabView development environment
is not required in order to call the VI. The procedures created by the wizard contain
parameters as required by the VI. Calling these procedures is similar to any ATEasy
procedures.

The LabView.prj and the LabView.llb in the ATEasy Examples folder provides an
example for using LabView. The following dialog displays the Import LabView Virtual
Instrument File dialog importing the LabView.llb provided with ATEasy:

C H A P T E R 1 0 – W H E R E T O G O F R O M H E R E

About Where to Go from Here
This chapter describes how and where to find information about topics not covered in this
manual.

Topic Description
More about ATEasy Describes some of the features available that are not

covered in this manual and provides information where to
find additional information.

Examples Describes a quick overview of the examples that are
provided with ATEasy.

More about ATEasy
ATEasy contains many features not covered in this manual. The following list describes
some of the features available that are not covered in this manual:

• Configuring and using the COM (serial), GPIB, VXI, File and WinSock interfaces

• Using TCP/IP communication

• Using DDE to communicate between applications

• Using the WIN32 API

• Creating and using threads and synchronization objects

• COM/ActiveX Objects and Multithreading

• Multiple UUTs, parallel and sequential execution modes

• The Internal Library classes, controls, procedures, variables and types

• Internal Variables

• Complete description of the ATEasy programming language and statements

• Using interrupts and Interface Events

• Error and exception handling

• Managing users

• Document version control and text formats

170 Getting Started with ATEasy

• Using module events

• Form types: MDI, MDI Child and Normal forms

• Adding and Using Menus with Forms

• Drawing on forms

• HTML and the Log control

• Logging and customizing your test results

• ATML support

• Creating and using ATEasy DLLs

The ATEasy User’s Guide and the ATEasy online help contain a complete coverage of
these topics. Additionally, you can look at the examples and drivers that were copied to
your Examples and Drivers directories during Setup.

Chapter 10 – WHERE to Go From Here 171

ATEasy Examples
ATEasy is provided with several examples that can be used to see how to implement
various application and features as required. This topic will describe briefly the available
examples provided in the ATEasy Examples folder. You can load the examples described
here by opening one the workspace files in that folder as described here:

Examples Workspace Files

Other workspace files and examples projects may be available in that folder.

Examples
The following examples are provided; Additional examples may be available, see the
ATEasy examples folder:

AdoDB Example
This example demonstrates the use and programming of databases using a Microsoft ADO
Active Data Objects ActiveX library. The example create read and write a data base, tables
and records. The example is using Microsoft Access and can be easily changed to use any
data base format that has ODBC driver. You must install the Microsoft ActiveX Data
Objects 2.8 Library from www.microsoft.com.

Files included: AdoDB.prj and AdoDB.prg.

Workspace File Description
Examples.wsp Workspace file for all example projects.
Basic.wsp Workspace file for Language, Forms and Test Executive

projects.
Communication.wsp Workspace file for ComChat and WsChatMT projects.
Excel.wsp Workspace file for Excel project.
ATEasy2.wsp Workspace file for ATEasy2 examples.

http://www.microsoft.com/�

172 Getting Started with ATEasy

ATML Example
This example demonstrates ATEasy support for IEEE Standard 1671- Automatic Test
Markup Language (ATML) for Exchanging Automatic Test Equipment and Test
Information via XML support. The support is provided using the ATEasy ATML.drv. The
example generates ATML Test Results (.xml file) from an ATEasy program, ATML Test
Description (.xml file) from an ATEasy program. It also transforms ATML TestResults to
formatted test log using Style sheets (XSL files): AtmlToText.xsl, AtmlToHtml.xsl or
AtmlToHtmlStyle1.xsl.

Files included: ATML.prj, ATML.prg, ATML.sys and the ATML.drv and its support files
(xsd schema files and xsl style sheet files).

 ComChat Example
This example demonstrates the use and programming of COM or serial ports. The
application creates a window that is used to type text used to send to a COM port. Any data
received from the port is appended and displayed in the window. The example uses ATEasy
COM interrupts to display the data received back. The example also shows how to read and
write from Windows INI files using windows API.

Files included: ComChat.prj, ComChat.sys and ComChat.drv.

DLL Example
This example demonstrates how to write DLL using Visual Studio (C) and use it from
ATEasy. Two DLLs are provided with this example. The first DLL, written in C with
Microsoft Visual Studio (dll.dll). The second DLL (ATEasyDll.dll) is written using
ATEasy and sources are provided in a separate ATEasy project (ATEasyDll.prj). The
provided program contains several tests that call DLL functions with various parameters
types.

Files included: Dll.prj, Dll.prg. DLL files (in the Examples\DLL folder): Dll.dll, Dll.dsp,
Dll.cpp, Dll.h, StdAfx.cpp and StdAfx.h. ATEasyDll files (in the Examples\ATEasyDLL
folder) – see the following paragraph.

Chapter 10 – WHERE to Go From Here 173

ATEasyDll Example
This example demonstrates how to create an ATEasy DLL (ATEasyDll.dll) and use it from
ATEasy and from other languages such as C and VB. This project contains a driver that
includes several exported functions, thus illustrating how to export functions via ATEasy
DLL. The example includes three additional projects that shows how to call the ATEasy
DLL from Microsoft Visual Basic application (ATEasyDllVb.exe), Microsoft Visual C
project (ATEasyDllC.exe) and ATEasy application (see DLL example).

Files included: ATEasyDll.prj, ATEasyDll.sys and ATEasyDll.drv. Application files for
VB and C in the Examples\ATEasyDll folder.

DotNet Example
This example demonstrates how to write and use a .Net assembly classes and how to use
the classes from ATEasy. The assembly is created using Microsoft Visual Studio .NET
using C# programming language. The provided program contains several tests that create
and use the various exported classes in the .NET assembly with various parameters types.
You must have the Microsoft .NET framework installed in your computer. It is
recommended to use Windows XP or newer since prior versions of Windows, OLE does
not support 64 and unsigned types commonly used in .NET.

Files included: DotNet.prj, DotNet.prg.

DotNet assembly source files (in the Examples\DotNet folder): DotNet.dll, DotNet.dsp,
DotNet.cs

Excel Example
This example demonstrates how to use Microsoft Excel using ActiveX/COM and DDE
(requires that you will have Excel installed in your machine). The example creates an excel
workbook with two spreadsheets, the first spreadsheet contain data and the second contains
a chart that plots the data from the first sheet. The example shows three ways of
implementing this:

• The first task, test is using the Excel COM object using late binding.

• The first task, second test is using the Excel COM type library using early binding.

• Second task, implement the example using ATEasy DDE functions.

You must have the Microsoft Excel installed in your computer for this example to run.

Files included: Excel.prj, Excel.prg.

174 Getting Started with ATEasy

FaultAnalysis Example
This example demonstrates the use of the fault analysis driver (FaultAnalysis.drv) along
with the TestExec.drv and Profile.drv. The example contains a program with many dummy
tests and preset test result set inside the tests. A condition file (FaultAnalysis.cnd) used by
the Fault Analysis driver contains conditions that can be analyzed, displayed and print to
the test log at the end of the run of the program.

Files included: FaultAnalysis.prj, FaultAnalysis.prg, FaultAnalysis.sys (contains the
FaultAnalysis.drv, Profile.drv and TestExec.drv) and FaultAnalysis.cnd.

Fl884x Example
This example demonstrates GPIB programming and how to build a GPIB interface
instrument driver. The example uses a Fluke 8840A digital multimeter. The example
demonstrates the use of IO Tables, Commands, GPIB interface and programming using IO
Tables or using the internal library GPIB functions.

Files included (in the Drivers folder): Fl884x.prj, Fl884x.prg and Fl884x.drv.

Forms Example
This example demonstrates how to create and use ATEasy's Forms. The example is divided
to tests each creates a different form with different sets and controls and menus.

Files included: Forms.prj and Forms.prg.

HW Example
This example demonstrates the use of the Geotest Hardware Access Driver (HW). The HW
driver features can be accessed from the Windows Start, Geotest, HW menu in the
taskbar. The example shows how to read the computer PCI bus configuration and resources.
The HW driver can be used to write prototype driver and to test PCI/PXI/ISA boards.

Files included: HW.prj, HW.prg HW.sys and HW.drv.

Hp34401aFP Example
This Example demonstrates Function Panel driver for DMM loaded with the HP34401A
digital multimeter driver from National Instruments .fp file. It contains a program utilizing
FP functions.

Files included: Hp34401aFP.prj, Hp34401a-FP.prg, Hp34401a-FP.sys and Hp34401a-
FP.drv

Chapter 10 – WHERE to Go From Here 175

IOTables Example
This example demonstrates creating and using of IO Tables and the File driver interface.
The example driver IoTables.drv contains many IO tables with different operations and
modes. The example uses a temporary file to perform the input and output operations.

Files included: IoTables.prj, IoTables.prg, IoTables.sys and IoTables.drv.

IviDmm Example
This example demonstrates using the standard IVI-C and IVI-COM class DMM drivers.
The example contains two tasks; the IVI-C task requires installing National Instrument
driver for HP34401A while the IVI-COM task requires the Agilent driver. You will need to
download and install the drivers from these vendors. VISA resource manager also needs to
be configured with the DMM logical name before using the example.

Files included: IviDmm.prj, IviDmm.prg, IviDmm.sys and IviDmm.drv.

LabView Example
This example demonstrates using and calling LavView VI and LLB files from ATEasy..
The example program contains procedures generated by importing the ViExamples.llb VIs
to ATEasy suing the Insert LabView VIs command. The example requires National
Instruments LabView 7.0 run-time (www.ni.com) installed in your computer (ATEasy will
work with LabView v6.0 or above).

Files included: LabView.prj, LabView.prg and LabView.llb.

Language Example
This example demonstrates the ATEasy programming language. The examples contains
several tasks to demonstrate Control statements, expressions and assignments, user defined
procedures, using variants variables, internal library, using DLLs, using the log window
and customizing the log output, interrupts, multi-threading, conditional compilation and
error and exception handling.

Files included: Language.prj and Language.prg.

http://www.ni.com/�

176 Getting Started with ATEasy

MMTimer Example
This example demonstrates how to use the Windows Multimedia timers to perform 1ms
accurate timing events. The example is provided with DLL sources (using MS VC++ 6.0)
that can serve as a template for an application that requires performing operations in an
accurate timing manner.

Files included: MMTimer.prj and MMTimer.prg

DLL Files (in Examples\MMTimer folder): MMTimer.dll, MMTimer.dsp, MMTimer.cpp,
MMTimer.h, StdAfx.cpp and StdAfx.h.

ModuleEvents Example
This example demonstrates ATEasy's program, system and driver module events. Running
or using the debug command on this example will generate trace output from each of the
ATEasy's module event procedures, which shows the sequence in which these events are
called by ATEasy.

Files included: ModuleEvents.prj, ModuleEvents.prg, ModuleEvents.sys and
ModuleEvents.drv.

MultiPad Example
A complete text editor with MDI user interface (Multi Document Interface) implemented
with ATEasy. This example is provided to show how to use the MDI user interface, MDI
Form, MDI Child Form, AMenu, AToolbar, ACommonDialog (file open, save and print,
font selection), AImageList, ATimer and more.

Files included: Multipad.prj, Multipad.sys and Multipad.drv.

MyProject Example
This example is provided as a reference to the files created in this manual. It contains all the
examples created in the ATEasy getting started manual.

Files included: MyProject.prj, MyProgram.prg, MySystem.sys, MyDMM.drv (HP34401a
driver) and MyRELAY.drv (GX6138 driver).

Chapter 10 – WHERE to Go From Here 177

ProcessDiagnostics Example (v8)
This example is provided as a tool to diagnose memory, threads or file handle leaks created
by calls to external libraries such as DLLs. .Net or COM. The example is using the
ProcessDiagnostics.drv driver provided with ATEasy. The driver can report the current
process memory consumption, handles count,; thread count, modules and CPU usage.

Files included: ProcessDiagnostics.prj, ProcessDiagnostics.prg, ProcessDiagnostics.sys,
and ProcessDiagnostics.drv.

Profile Example
This example shows how to create profile programmatically and dynamically. First it
selects the second profile of the given profile file, Profile.prf in the ATEasy Examples
folder. When the Test Executive driver displays the selected profile in its tree view, you can
run the profile. At the end of a program run, it asks you to perform its diagnostics if there
are any failed tests – upon which if you respond Yes, then it creates a diagnostic profile and
a file, "Diagnostics.prf" in the current folder and runs it. The newly created profile includes
all failed tests.

Files included: Profile1.prg, Profile2.prg, Profile.sys, Profile.drv and TestExec.drv.

StdIoProcess Example (v8)
This Example shows how to control a console application. The example shows 3 console
applications. The windows Command prompt (cmd.exe), TCL interpreter and PERL
interpreter. The PERL interpreter used in this example is Strawberry Perl
(http://www.strawberryperl.com). The TCL interpreter used in this example is ActiveState
ActiveTcl (http://www.activestate.com/activetcl). The example uses the ATEasy
StdIoProcess driver that can be used to control console applications by redirection their
standard input, output and error pipes. The driver offers synchronous and asynchronous
way to redirect the input to the console application.

The driver uses .NET System.Diagnostics.Process class).

Files included: StdIoProcess.prj, StdIoProcess.prg, StdIoProcess.sys, StdIoProcess.drv,
StdIoProcessAdd.tcl, StdIoProcessAdd.pl

http://www.strawberryperl.com/�
http://www.activestate.com/activetcl�

178 Getting Started with ATEasy

TestExecMini Example
This example can be used as a basic building block for building your own test executive. It
displays a form that allows the user to select a test from the program tests and run it.:

Files included: TestExecMini.prj, TestExecMini.prg and TestExecMini.drv.

TestExec Example
This example demonstrates the use of the TestExec and the Profile drivers and their user
interface. A Profile file TestExec.prf is provided and contain several profiles ready to run.

Files included: TestExec.prj, TestExec-1.prg, TestExec-2.prg, TestExec.sys (uses
Profile.drv, TestExec.drv and TestExec.prf).

TestExecMutipleUUTs Example (v8)
This example demonstrates the use of the TestExec to run multiple UUTs in parallel and
sequential mode. The example is similar to the TestExec example with the exception of
additional code that was added to the System.OnInit() event to setup and run multiple
UUTs

Files Included: TestExecMultipleUUts.prj, TestExec-1.prg, TestExec-2.prg, Language.prg,
TestExecMultipleUUts.sys, Profile.drv, and TestExec.drv.

TestExecUser Example
This example demonstrates the use of Test Executive users file. The users file
allows you to create Multi users environment where an administrator sets each user
group’s privileges.

Files included: TestExecUsers.prj, TestExec-1.prg, TestExec-2.prg, TestExecUser.prg ,
TestExecUser.sys, Profile.drv and TestExec.drv.

VB (Visual Basic) Example
This example demonstrates how to use an ActiveX object, ActiveX control, enumerated
type and structures created using Microsoft Visual basic. The example is provided with
sources safe for the Visual Basic project. You should have VB 6.0 in order to compile the
VB examples and the VB 6.0 run-time in order to run it.

Files included: VB.prj, VB.prg.

VB Files (in Examples\VB folder): VB.ocx,, ATEasyVB.vbp, Class1.bas, CPShapeL.ctl,
CPShapeL.ctx and CPShapeL.pag.

Chapter 10 – WHERE to Go From Here 179

WsChatIE Example
This example demonstrates how to use WinSock and TCP/IP communication protocol to
communicate between applications. The application creates a window that is used to type
text used to send to a TCP/IP port. Any data received from the port is appended and
displayed in the window. The application can be set to act as a client or as a server. The
example uses ATEasy Interface Events to receive data from the port (client or server) or
accept the client connection (server).

Files included: WsChatIE.prj, WsChatIE.sys and WsChatIE.drv.

WsChatMT Example
This example demonstrates how to use WinSock and TCP/IP communication protocol to
communicate between applications. The application creates a window that is used to type
text used to send to a TCP/IP port. Any data received from the port is appended and
displayed in the window. The application can be set to act as a client or as a server. The
example uses a separate thread to receive data from the port (client or server) or accept the
client connection (server). This example is similar to the WsChatIE, however, the
communication is done here in separate thread instead of using interface events.

Files included: WsChatMT.prj, WsChatMT.sys and WsChatMT.drv.

180 Getting Started with ATEasy

Index 181

I N D E X

.

.h file ... 17, 23, 152

.NET 17, 23, 165, 171
Methods .. 66

A

Abort ... 50, 75
abort statement .. 158
AButton 79, 128, 131, 136, 138
AChart ... 79, 128
ACheckBox ... 128
AComboBox ... 128
Active Data Obkjects 169
Active document ... 40
Active Project ... 40
Active X controls 146
ActiveX ... 17
ActiveX controls 22, 23, 59, 123, 160, 161
Adding and Creating Drivers 86
Address

Geotest .. 4
AdoDB Example 169
AGroupBox ... 128
AImage .. 128
AImageList ... 128
ALabel .. 128
AListBox ... 129
ALog ... 129
Alt Key

Setting character.................................... 133
APanel ... 129
Application

Adding Test Executive driver 52
Building .. 59
Create Excel .. 163
Creating ... 36, 38

Executing .. 59
Instrument Panel 35
Other ... 35
Run Mode ... 76
Running .. 50
Types .. 35, 38
Using Excel .. 161
Wizard .. 35, 36

Application Wizard
Creating projects with............................. 36
Selecting drivers 39
Starting ... 36

ARadioButton ... 129
Arguments .. 116
AScrollBar .. 129
ASlider.. 129
Assembly (.NET) 165
AStatusBar .. 130
ASwitch .. 130
ATab ... 130
ATE 1, 15, 16, 18, 19
ATEasy

Applications .. 20
Overview .. 16
Programming language 167
Registering .. 13
Starting ... 34
What Is? .. 16

ATEasyDll Example 171
ATextBox ... 130
ATimer ... 130
ATM Example .. 170
AToolBar .. 130
Auto Hide Window 32
Auto Type Information 78
Automated Test Equipment 1, 18, See Also

ATE
Automated Test System 18

182 Getting Started with ATEasy

B

Bool .. 62
BString.. 62
Build

Log.. 52
Building Application 59
Button

Adding to form 131
Close ... 136
Control properties 133
OnClick .. 136

Byte .. 62

C

C header file ... 152
C Programming Language . 16, 145, 149, 150,

151
C/C++ header file 17, 23
Call Stack/Locals .. 75
Calling a procedure 73
Calling an I/O Table from a Test 100
Char .. 62
Chart

Adding to form 131
Control properties 134
Setting background 134

CheckError 156, 157, 158
Checkit! .. 71
Class ... 159, 165
Client area ... 35
Code

Array ... 63, 73
Auto Type Information 78
Calling a procedure................................. 73
Completion ... 78
Debugging .. 75
Example .. 27
Flow Control Statement 78
For ... next statement 78
Form ... 142
Global array .. 63
Initialize driver 155

Parameter Information 78
Parameter Suggestion 78
Procedure 71, 138, 140
Procedure call .. 78
Public array ... 63
Syntax highlighting 78
System ... 27
Testing form .. 143
Unload Form ... 136
Writing .. 78
Writing procedure 71, 139

Colors .. 126
COM ... 17

Classes .. 79
Controls ... 79
CreateObject ... 159
GetObject .. 159
Interfaces ... 167
Library .. 146
Methods .. 66
Objects .. 159
Procedures ... 79
Properties .. 79
Variables ... 79

ComChat Example 170
Commands

Abort ... 50
About .. 26
Arguments ... 116
Attaching I/O Tables 115
Attaching procedures 115
Availability ... 117
Build .. 30
Completion .. 119
Copy .. 30
Creating driver 114
Creating System 117, 119
Current command item 113
Current Test .. 50
Debug .. 30
Defined .. 22, 26
Delete .. 30
Driver .. 111, 114

Index 183

Examples 27, 112, 120
Features ... 110
Find ... 30
Help ... 30
Insert ... 30
Overview ... 110
Paste .. 30
Pause ... 50
Procedures list 113
Program ... 111, 120
Public .. 117
Replace .. 30
Replacing parameters 116
Run .. 30, 50
Skip Test ... 50
Start ... 50
Syntax ... 110
System ... 111, 117
Tools ... 30
Using from other modules 117
View .. 30, 113
Vs. Procedures 110

Component Object Model See COM
Context menu .. 41
Continue/Pause ... 75
Controls ... 121, 145

Adding .. 131
Button .. 128
Button properties 133
Chart .. 128
Chart properties 134
Check box ... 128
COM ... 79
Combo box .. 128
Forms .. 127
Group box ... 128
Image .. 128
Labels .. 128
List box ... 129
Location .. 132
Log .. 129
Panel .. 129
Properties .. 132

Radio button ... 129
Scroll bar .. 129
Size ... 132
Slider .. 129
Status bar .. 130
Switch ... 130
Tab .. 130
Tab order .. 135
Text box .. 130
Timer .. 130
Toolbar ... 130

Conventions Used in this Manual 2
Copy and Paste ... 151
Copy command 30, 41
Copyright .. 2
Corrupt files .. 12
CreateObject 159, 162, 164
Currency ... 62
Current Test .. 50
Customer Support 13
Cut command ... 41

D

Data
Measuring ... 98
Reading ... 98

Data type... 61
Character strings 62
Definition .. 62
Floating point numbers 62
Miscellaneous ... 62
Object ... 62
Signed integer numbers 62
Unsigned integer numbers 62

Database ... 169
DateTime .. 62
DDE .. 167
DDWord ... 62
Debug

Log.. 52
Debugging

Abort ... 75
Code.. 75

184 Getting Started with ATEasy

Continue/Pause 75
Doit!.. 75
Run to Cursor ... 75
Selection Run Mode 76
Step Into ... 75
Step Out .. 75
Step Over .. 75
Toggle Breakpoint 75

Default name .. 87
Delay .. 90
Delete command ... 30
Digital ... 19
Directories .. 9
Discrete ... 95
DLL

Configuring Interface 149
Creating driver 147
Defined ... 146
GXSW.DLL 147, 150
Initializing .. 156
Procedures 66, 151, 152
Properties .. 148
RELAY ... 155
Using procedures 155

DLL Example ... 170
DLong ... 62
DMM .. 27, 86, 92
Dockable windows 41
Docked Display Mode 32
Document

Active ... 40
Version control 167

Document View window 32
Documentation Conventions 2
Doit! 30, 75, 101, 143, 163, 164
DotNet Example 165, 171
Double .. 62
Drag and Drop 41, 151
Drawing .. 126
Driver.. 28, 82

Adding .. 86
Commands .. 111
Configuring .. 89

Creating ... 86
Creating commands 114
Default name ... 87
Defined .. 24, 28
Defining interface 88
Difference between driver and shortcut .. 87
Directory ... 9
DLL-based .. 147
DMM .. 86
Errors .. 157
Fault Analysis ... 38
Files ... 9, 20
Forms .. 123
Handling errors 157
Initializing ... 156
New ... 86
Profile .. 38
Shortcut ... 28, 87
Test Executive 38, 52, 54, 56

Driver shortcut .. 87
DMM .. 86

DWord .. 62
Dynamic Link Libraries 23, 146, See Also

DLL

E

Early Binding 159, 161
Enum 23, 47, 62, 161
Error Handling .. 17
error statementr ... 157
error statment .. 158
Errors .. 145, 157, 167

CheckError .. 157
Exception handling 167
Handling .. 158

Events .. 121, 136
Code .. 138
Defined .. 22
Form .. 66
Module .. 66
OnAbort .. 66
OnClick ... 79, 138
OnMouseMove 66

Index 185

Procedures ... 66
Using module .. 168
Writing .. 136, 138

Examples ... 9, 169
Commands 27, 112
Explicit call to I/O Table 100
Implicit call to I/O Table 100
Program commands 120

Excel .. 23, 145, 146, 159, 160, 161, 162, 163,
164
Create application 163
Object .. 163

Excel Example .. 171
Exception handling 167
Exception Handling 17
EXE file

Creating ... 59
Executing Application 59

F

Fault Analysis 38, 54
FaultAnalysis Example 172
File format ... 37
File Interface ... 167
Find command .. 30
Fl8840x Example 172
Float .. 62
Float Display Mode 32
Flow-Control Statement 78
Fonts.. 126
Forms .. 121

Adding controls 131
Adding variables 137
Adjusting location 132
Adjusting size 132
Button control properties 133
Chart control properties 134
Colors properties 126
Control properties 132
Controls ... 127
Controls tab order 135
Creating ... 125
Defined .. 22

Development Process 124
Drawing .. 168
Drawing properties 126
Driver .. 123
Events ... 136
Events with variables 137, 138
Fonts properties 126
Functions .. 123
Layout ... 135
Load statement 141
MDI .. 168
MDI Child .. 168
Menus ... 168
Miscellaneous properties 126
Normal .. 168
OnClick .. 136, 138
Overview .. 123
Pictures properties 126
Procedures .. 139
Program .. 123
Properties .. 126
Scale properties 126
Setting Properties 127
System .. 123
Testing .. 142, 143
Testing Layout 135
Unload .. 136
Using .. 142
Variables ... 137
Window properties 126
Writing events 138
Writing events 136
Writing procedures 139

Forms Example ... 172
For-Next Loop 71, 78
Function .. 66
Function Panel 81, 102, 104, 106
Function Panel drivers 17

G

General Purpose Interface Bus See GPIB
GetErrorModule 158
GetErrorMsg ... 158

186 Getting Started with ATEasy

GetErrorNum .. 158
GetObject .. 159
GetViReference .. 166
GPIB . 9, 16, 17, 18, 23, 24, 26, 28, 32, 66, 79,

81, 82, 83, 84, 86, 88, 89, 90, 93, 101, 102,
104, 105, 106, 172
Defining .. 83
Defining interface 88
Interface .. 167

GTSW32.DLL
Header file .. 150

GXSW.DLL 147, 150
About .. 150
Using procedures 155

H

Hardware and Software Requirements 6
Hardware interfaces 9, See Also Chapter 6
HP34401A .. 103
HP34401aFP Example 172
HTML31, 52, 55, 129, 168
HW Example .. 172
HW.SYS ... 11

I

I/O Table... 81, 90
Attaching commands 115
Calling from test 100
Creating .. 91
Creating output operation 92
Creating send operation 93
Delay .. 90
Discrete ... 95
Explicit call ... 100
Implicit call ... 100
Input.. 90
Operations .. 90
Output ... 90
Procedures .. 66
Public .. 99
Reading data ... 98
Receive ... 90

Send .. 90
Trig .. 90

IDE ... 1, 10, 15, 16, 17, 20, 21, 29, 30, 31, 32,
33, 35, 39, 40, 41, 52, 53, 56, 76, 85

IdQuery ... 104
ignore statement .. 158
Import LabView Virtual Instrument File (.vi,

.llb)… .. 166
Importing from C Header file 152
InitializeOnInit .. 104
Input .. 90
Insert Library 160, 165
Installing ATEasy .. 5

Compact .. 10
Custom .. 10
Directories ... 9
Full .. 10
Hardware Interfaces 9
Reinstall .. 12
Run-Time .. 10
Types of installation 10
Typical .. 10
With Windows NT 11

Instrument Panel Application...................... 35
Integrated Development Environment . 16, 29,

See Also IDE
Interface Test Adapter 19
Interface Types 82, 113, 115, 116
Interfaces ... 18, 82

Adding .. 83
COM ... 82
Configuring ... 149
Defining .. 83
Defining driver .. 88
External ... 82
File .. 82
GPIB ... 82
Hardware ... 9
Internal .. 82
ISA .. 82
None .. 82
Supported .. 16
VXI ... 82

Index 187

WinSock .. 82
Internal Library .. 22, 61, 63, 79, 90, 114, 139,

167
Internet Explorer ... 6
Interrupts ... 167
IOTables Example 173
IPX/SPX .. 6
ISA .. 82, 172
IVI 82, 103, 104, 107
IVI driver .. 108

L

LabView .. 166
LabView Example 166
LabView Example 173
LabView® ... 17
LabWindows/CVi® 17
Language Example.................................... 173
Late Binding 159, 163

Using ... 163
LIB .. 102
Library .. 79

About .. 146
Classes .. 79
Controls ... 79
Data types ... 79
Defined .. 23
DLL ... 66, 146
Internal .. 79, 167
Modules .. 79
Overview ... 146
Procedures ... 79
Properties .. 148
Type .. 146
Types ... 23
Variables ... 79

LLB ... 17
LLB file ... 166
Load Statement ... 141
Local Variables ... 69
Location .. 37
Log

Build .. 52

Control .. 168
Debug ... 52
Test ... 51
Window .. 31, 50

Long ... 62

M

MDI .. 41, 168, 174
View child window 51

MDI Child .. 41, 168
Measurement .. 19
Measuring data ... 98
Menu

Adding on form 168
Commands reference 30

MMTimer Example 174
Modal ... 57
Modeless ... 57
Modify .. 13
Module events .. 66
ModuleEvents Example 174
Modules .. 20
Monitor View ... 101
Multi Threading .. 17
MultiPad Example 174
Multiple Document Interface See MDI
Multiple users ... 17
MyProject Example 174

N

Naming Conventions 63
new statement 159, 165
Nothing ... 159, 165

O

Object ... 62, 159, 165
Data type ... 163
Excel ... 163
Selected .. 40
Synchronization 167
View ... 43

Object Data Type 163

188 Getting Started with ATEasy

OCXSee ActiveX controls
OLE .. 17
OnAbort .. 66
OnAbort module event 158
OnClick 2, 22, 66, 79, 121, 136, 138
OnError ... 145
OnError module event 158
OnInit 104, 145, 156
OnMouseMove ... 66
Other Application 35
Output ... 90

Creating output operation 92
Discrete Mode .. 95

Overview .. 15

P

Parameter Information 78
Parameter Suggestion 78
Parameters .. 69

Creating procedure 69
Load statement 141
Procedure .. 69
Replacing .. 116
Val .. 69
Var .. 69

Paste command 30, 41
Pause ... 50
pause statement ... 158
PCI .. 172
Pictures ... 126
Power .. 19
PRG file See Program
privileges .. 56
PRJ file .. See Project
Procedure .. 61, 62, 66

.NET methods ... 66
ATEasy ... 66
Attaching to commands 115
C Programming Language 151
Call ... 78
Calling .. 73
Calling I/O Table 100
Changing properties 68

COM methods ... 66
Converting C to ATEasy 151
Creating ... 67
Creating parameters 69
Creating variables 69
Declaring DLL 151, 152
Defined .. 22, 66
DLL 66, 151, 152, 155
Events .. 66
Function .. 66
Importing from C Header file 152
IO Tables ... 66
Library .. 79
List .. 113
Local Variables 69
OnClick ... 138
Parameters ... 69
Properties .. 68
Subroutine ... 66
System ... 117
Types ... 66
Using DLL .. 155
View .. 67, 72
Vs. Commands 110
Writing code .. 71
Writing event 136, 138
Writing form ... 139

ProcessDiagnostics Example 175
Profile .. 35, 38, 54
Profile Example .. 175
Program

Commands 111, 120
Defined .. 25
Forms .. 123
Variables ... 64

Program Module ... 25
Programming Language 173
Project

Active .. 21, 40
Defined .. 21
File .. 20
Location .. 37
Name ... 37

Index 189

Properties
Changing procedure 68
Colors .. 126
Const ... 65
Description .. 68
Displaying test .. 45
Drawing .. 126
Fonts .. 126
Form control ... 132
Forms .. 126
Misc. ... 126
Name ... 68
Pictures .. 126
Procedure .. 68
Public 65, 68, 99, 148
Scale .. 126
Setting Form ... 127
Setting test ... 47
Task ... 45
Test .. 45, 46
Value ... 65
Window ... 31, 126

Properties window 31, 65, 117, 127, 139
Public 2, 23, 68, 99, 117, 148, 151

I/O Table ... 99
Properties .. 65

PXI .. 16, 172
PXI-PCI Explorer 149, 155

R

RAD See Rapid Application Development
Rapid Application Development 17
Reading data ... 98
Receive .. 90
Registering ATEasy 13
Relay 112, 120, 148, 155, 157
Rename command 41
Repair .. 13
Replace command 30
Requirements

Hardware ... 6
Internet Explorer 6
Software .. 6

ResetOnInit ... 104
ResourceName .. 105
retry statement .. 158
RS232 ... 16, 18
RS422 ... 16, 18
RS485 ... 18
Run ... 50
Run

Application ... 50
Run

Execute ... 59
Run to Cursor ... 75

S

Scale ... 126
Selected Object ... 40
Selection Run Mode 76
Send .. 90

Creating operation 93
Serial Communication 16, 18
Serial Port ... 170
Setup Command Line 8
Setup Maintenance 12
Short ... 62
Silent (Automated) Setup 8
Skip Test ... 50
Start .. 50
Starting ATEasy .. 34
Statements and Operators 78
Status bar .. 31, 130
StdioProcess Example 175
Step Into 30, 50, 75, 77
Step Out .. 75
Step Over 30, 50, 75, 76
Stimulus .. 19
String .. 62
Struct .. 62, 161
Submodules .. 22

Commands .. 22
Drivers .. 24
Events ... 22
Forms .. 22
Libraries .. 23, 146

190 Getting Started with ATEasy

Procedures .. 22
Tests.. 24
Types .. 23
Variables ... 23

Subroutine .. 66
Subscription .. 3
Switching .. 19
Syntax ... 110

Highlighting .. 78
SYS file .. See System
System

Commands 111, 117
Configuring driver 89
Creating commands 117, 119
Directory ... 9
File .. 20
Forms .. 123
Module .. 26
Procedure .. 117

System Module ... 26

T

T&M ... 16, 17
Tasks

Adding .. 42
Properties .. 45
Renaming .. 43
View ... 43

Tasks and Tests .. 25
Adding .. 42

TCP/IP 6, 16, 82, 167, 177
TCPIP ... 105, 106
Technical support 3, 13
Telephone numbers

Geotest .. 4
Test

Calling a procedure................................. 73
Calling I/O Table 100
Code.. 43
Description ... 43
Header .. 43
Log.. 51
Properties .. 45

Renaming .. 43
Result .. 47, 168
Set TestResult ... 49
Setting properties 47
Status ... 47
Types ... 48
View .. 43

Test and Measurement See T&M
Test Application .. 35
Test Executive 1, 33, 38, 52, 54, 55, 56, 57,

58, 123, 169, 175, 176
Adding .. 52
Example HTML format 56
More .. 56
Removing .. 60
Using ... 54, 55

Test instruments
Types ... 19

Test Requirement Document See TRD
Test Result .. 47
Test Results ... 168

Customizing .. 168
Logging ... 168

Test Status ... 47
TestExec Example 176
TestExec.drv 35, 52, 53, 172, 175, 176
TestExecMini Example 176
TestExecUser Example 176
TestExecUserMultipleUUTs 176
Testit! .. 74
TestResult 27, 47, 48, 49, 73, 79, 100
Tests

Adding .. 42
Creating for Forms 142
Defined .. 24

TestStatus 47, 48, 79, 162, 164
Text formats .. 167
Threads .. 167
Toggle Breakpoint 30, 50, 75, 77
Toolbars .. 31
Touch Screen .. 57
Trademarks ... 2
Training ... 4

Index 191

TRD .. 25, 28, 110
Tree views ... 41
Trig.. 90
try-catch statement 158
Type Library 23, 145, 146, 159

Defined .. 146
Early binding ... 159
Excel ... 160
Late binding .. 159
Loading Excel 160
Using Excel application 161

Typedef ... 23, 62
TypeDef .. 161
Types

Defined .. 23

U

Unload Form ... 136
user group ... 56

V

Val ... 69, 151
Var .. 63, 69, 151
Variables ... 61

Adding form .. 137
Array dimension...................................... 65
Array size .. 65
Creating procedure 69
Declaring program module 64
Defined .. 23, 62
Description .. 65
Form .. 137
Form events ... 138
Internal .. 167
Library .. 79
Local ... 69
Name ... 65
Naming conventions 63
Prefixes ... 63
Properties .. 65
Public .. 65
Rules ... 63

Setting properties 65
TestResult ... 47, 79
TestStatus ... 47, 79
Type .. 65

Variant .. 62
VB Example ... 176
VI .. 17
VI file ... 166
Views

Commands .. 113
Document ... 41
Monitor ... 101
Object ... 43
Procedure .. 67
Tasks ... 43
Tests.. 42, 43
Tree ... 41

Virtual Instrument 166
Virtual Keyboard .. 58
VISA ... 102, 104
VME eXtension Interface See VXI
VXI 9, 16, 18, 23, 28, 79, 82, 83, 90, 101,

102, 105, 106
Interface .. 167

VXIplug&play 102, 107
VXIPNP.. 102

W

Watch.. 75
WChar .. 62
What is ATEasy? .. 16
WIN32 API ... 167
Windows

Call Stack/Locals 32, 75
Client .. 35
Debug ... 32
Dockable ... 41
Document View 32
Log.. 31, 50
MDI child ... 41
Monitor ... 32
Properties 31, 45, 65, 126
Watch .. 32, 75

192 Getting Started with ATEasy

Workspace .. 35
Windows 2000 .. 6, 16
Windows 95 .. 6
Windows 98 .. 6, 16
Windows NT 5, 6, 11

Installation .. 11
Windows XP ... 16
WinSock 23, 82, 101, 177

Interface .. 167

Word ... 62
Workspace 20, 35, 40

Defined .. 20
File .. 20, 40
Saving ... 60

WsChatIE Example 177
WsChatMT Example 177
WSP File 20, See also Workspace

	Disclaimer
	Support and Subscription
	Copyright and Version
	Trademarks
	CHAPTER 1 - INTRODUCTION
	ATEasy Getting Started Roadmap
	Documentation Conventions
	Technical Support
	General Information
	Software Subscription and Support
	ATEasy Training
	Contact Information

	CHAPTER 2 – SETUP AND INSTALLATION
	About Setup and Installation
	Hardware and Software Requirements
	Installation Directories
	Installing Hardware Interfaces
	Installation Types
	HW Device Driver Manual Installation
	Setup Maintenance Program
	License, Registration, and Support

	CHAPTER 3 – OVERVIEW OF ATEASY
	About the Overview
	What is ATEasy?
	Automated Test System
	Workspace, Applications and Modules
	The Project
	Submodules
	The Program Module
	Tasks and Tests
	The System Module
	Commands
	Driver Module
	The Integrated Development Environment

	CHAPTER 4 – YOUR FIRST PROJECT
	About Your First Project
	Starting ATEasy
	Application Types
	Creating an Application
	More about the IDE
	Your First Test Program
	Test Properties
	Test Status and Test Result
	Running Your First Application
	The Log Window
	Adding the Test Executive Driver
	Using the Test Executive Driver
	More about Test Executive Driver
	Building and Executing Your Application

	CHAPTER 5 – VARIABLES AND PROCEDURES
	About Variables and Procedures
	Variables and Data Types
	Variable Naming Conventions
	Declaring Variables:
	Variable Properties
	Procedures
	Creating a Procedure
	Procedure Properties
	Procedure Parameters and Local Variables
	Writing the Procedure Code
	Calling the Procedure from a Test
	Debugging Your Code
	More about Writing Code
	The Internal Library

	CHAPTER 6 – DRIVERS AND INTERFACES
	About Drivers and Interfaces
	Interfaces, Interface Types, and Drivers
	Adding an Interface
	Creating and Adding Drivers
	Driver and Driver Shortcut
	Driver Default Name
	Defining the Driver Interface
	Configuring the Driver in the System
	I/O Tables
	Creating a SetFunctionVDC I/O Table
	Creating a SetFunctionVAC I/O Table
	Using the Output Discrete Mode
	Reading Data from the Instrument
	Calling an I/O Table from a Test
	Using the Monitor View
	Using VXI Plug&Play Function Panel Drivers
	VISA
	Function Panel Driver Files
	Specifying the ResourceName Parameter
	Using the Converted Function Panel ATEasy Driver

	Using IVI drivers

	CHAPTER 7 – COMMANDS
	About Commands
	Overview of Commands
	Commands and Modules
	The Commands View
	Creating Driver Commands
	Attaching Procedures and I/O Tables to Commands
	Replacing Parameters with Arguments
	Using Commands from Other Modules
	Creating System Commands
	Program Commands

	CHAPTER 8 – WORKING WITH FORMS
	About Working with Forms
	Overview of Forms
	The Form Development Process
	Creating a Form
	Setting the Form Properties
	Form Controls
	Adding Controls
	Setting Control Properties
	Setting Controls Tab Order
	Testing the Form Layout
	Using Events
	Writing an Event for the Close Button
	Adding Variables
	Writing an Event for the Acquire Button
	Writing the AcquireData Procedure
	The Load Statement
	Using the Form
	Testing the Form

	CHAPTER 9 – WORKING WITH EXTERNAL LIBRARIES
	About External Libraries
	Overview of Libraries
	Creating a DLL-Based Driver
	About the GXSW.DLL
	Declaring DLL Procedures
	Importing C Header File
	Using DLL Procedures
	Driver Initialization
	Handling Errors in a Driver
	More about Error Handling
	COM Objects and Type Libraries
	Using the Excel Type Library
	Using the Object Data Type
	Using .NET assemblies
	Using LabView® VI and LLB files

	CHAPTER 10 – WHERE TO GO FROM HERE
	About Where to Go from Here
	More about ATEasy
	ATEasy Examples
	Examples Workspace Files
	Examples
	AdoDB Example
	ATML Example
	 ComChat Example
	DLL Example
	ATEasyDll Example
	DotNet Example
	Excel Example
	FaultAnalysis Example
	Fl884x Example
	Forms Example
	HW Example
	Hp34401aFP Example
	IOTables Example
	IviDmm Example
	LabView Example
	Language Example
	MMTimer Example
	ModuleEvents Example
	MultiPad Example
	MyProject Example
	ProcessDiagnostics Example (v8)
	Profile Example
	StdIoProcess Example (v8)
	TestExecMini Example
	TestExec Example
	TestExecMutipleUUTs Example (v8)
	TestExecUser Example
	VB (Visual Basic) Example
	WsChatIE Example
	WsChatMT Example

	INDEX

